Cauchy-Schwarz $|v \cdot v| \leq\|u\|+\|v\|$. Triangle Inequality $\|u+v\| \leq\|u\|+\|v\|$. Distance $d(u, v)=\|u-v\| \cdot \cos \theta=\frac{u \cdot v}{\|u l\| v \|} \cdot\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}$ iff u is orthoganol to v. $\operatorname{proj}_{u} V=\left(\frac{v \cdot u}{u \cdot u}\right) u=\frac{v \cdot u}{\|u\|^{2}} u$. Where p is a point on the line, n_{i} is a normal vector to the line, and d is a direction vector on the line: Normal Form:
line $\rightarrow\left\{\begin{array}{l}n_{1} \cdot x=n_{1} \cdot p_{1} \\ n_{2} \cdot x=n_{2} \cdot p_{2}\end{array}\right.$ plane $\rightarrow n \cdot x=n \cdot p$. General Form: line $\rightarrow\left\{\begin{array}{l}a_{1} x+b_{1} y+c_{1} z=d_{1} \\ a_{2} x+b_{2} y+c_{2} z=d_{2}\end{array}\right.$. plane $\rightarrow a x+b x+c z=d$. Vector Form: line $\rightarrow x=p+t d$. plane $\rightarrow x=p+s u+t v$. Parametric Form (Just expand the Vector form into three equations. Homogeneous system $\rightarrow A x=0$. Distance from point $B=\left(x_{0}, y_{0}, z_{0}\right)$ to plain $a x+b y+c z=d$ is $\frac{\text { lax } 0+b y_{0}+c z 0-d i}{\sqrt{a^{2}+b^{2}+c^{2}}}$. Unique infinite solution(s) \rightarrow consistent, No solutions \rightarrow inconsistent. A matrix is in row echelon form if it satisfies the following properties: Any row consisting entirely of zeros is at the bottom. In each nonzero row, the first nonzero entry is in a column to the left of any leading entries below it. The rank of a matrix is the number of nonzero rows in its row echelon form. Rank Theorem \# of free variables $v=n-\operatorname{Rank}(A)$ where n is the number of variables. reduced row echelon form: 1)It is in row echelon form. 2) The leading entry in each nonzero row is a 1.3) Each column containing a leading 1 has zeros everywhere else. 2.6: Let $v_{1}, v_{2}, \ldots, v_{m}$ be column vectors in \mathbb{R}^{n} and let A be the $n \times m$ matrix [$v_{1} \ldots v_{m}$] with these vectors as its cols. Then v_{1}, \ldots, v_{m} are lin. dep. if and only if the homogeneous linear system [Al0] has a nontrivial solution. 2.7: Given $\left[v_{1} \ldots v_{m}\right]^{T}$ then v_{1}, \ldots, v_{m} are linearly depedent if and only if rank $(A)<m$. Symmetric $\rightarrow A=A^{T}$. Algebraic Properties of Matricies include: (+,scalary) Commutativity, Asscociativity, Identity, +inverse, distributivity Transpose Properties Theorem 3.4: $\left(A^{T}\right)^{T}=A,(A+B)^{T}=A^{T}+B^{T},(k A)^{T}=k\left(A^{T}\right),(A B)^{T}=B^{T} A^{T}$, $\left(A^{+r}\right)^{T}=\left(A^{T}\right)^{+r}$ Theorem 3.5: If A is a square matrix, then $A+A^{T}$ is a symmetric matrix. For any matrix $A, A A^{T}$ and $A^{T} A$ are symmetric matrices. T 3.6: Inverses of square matrices are unique. T 3.7: A invertable $\rightarrow A x=b$ has a unique solution. T 3.9: A invertable $\rightarrow A^{-1}$ invertable. $(c A)^{-1}=\frac{1}{c} A^{-1} \cdot(A B)^{-1}=B^{-1} A^{-1} \cdot\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$ $\left(A^{n}\right)^{-1}=\left(A^{-1}\right)^{n} \cdot A^{-n}=\left(A^{-1}\right)^{n} .\left(A_{1} \times \ldots x A_{n}\right)^{-1}=A_{n}^{-1} \times \ldots \times A_{1}^{-1}$. T 3.10 : Let E be an elementary matrix, then performing that operation on A is the same as $E A$. T 3.11: Each elementary matrix is invertible and its inverse is an elementary matrix of the same type. Def: Let A be a square matrix. A factorization of $A=L U$, where L is unit lower triangular and U is upper triangular, is called an $L U$ factorization. Consider $A x=b$, and then $A x=L U x=L(U x)=b$. Let $L U=y$. Now solve $L y=b$, and then $U x=y$. Find $L U$ factorization: Row reduce to ref form using elementary (in order top to bottom column by column) row ops of the form $R_{\text {row }}-k R_{\text {col }}$. Then place k in the identity matrix at row, col. T 3.16: If A is an invertable matrix that has an $L U$ factorization, then L and U are unique. Def: A subspace of \mathbb{R}^{n} is any collection S of vectors in \mathbb{R}^{n} such that (1) $0 \in S$, (2) closed under addition and (3) scalar multiplication. T 3.19: For $v_{i=1, k} \in \mathbb{R}^{n}, \operatorname{span}\left(v_{1}, \ldots, v_{k}\right)$ is a subspace of \mathbb{R}^{n}. Def: row space of A is the subspace row (A) spanned by the rows of A. Def: col space of A is the subspace $\operatorname{col}(A)$ spanned by the rows of A. T 3.20 : Let B be any matrix that is row equivalent to a matrix A. Then $\operatorname{row}(A)=\operatorname{row}(B)$. (Two matrices are row equivalent iff they can be reduced to the same row eschlon form.) T 3.21: Let A be an $m \times n$ matrix and let N be the set of solutions to $A x=0$. Then N is a subspace called the null space. Def: A basis for a subspace S of \mathbb{R}^{n} is a set of vectors in S that (1) spans S and (2) is Lin. Ind.. To find the $\operatorname{row}(A), \operatorname{col}(A)$, $\operatorname{null}(A)$: (1) find $R=\operatorname{rref}(A)$. (2) Use the nonzero row vectors of R containing leading 1 s to form a basis for row (A). (3) Use the column vectors of A with leading $1 s$ in R as a basis for $\operatorname{col}(A)$. (4) use $R x=0$ to find the null(A). T 3.23: Any two bases for S have the same number of vectors. Def: $\operatorname{dim}(S)$ is the number of vectors in the basis for S. $\operatorname{dim}(\operatorname{row}(A))=\operatorname{dim}(\operatorname{col}(A))=\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right) \cdot \operatorname{nullity}(A)=\operatorname{dim}(\operatorname{null}(A))$. Let A be an $m \times n$ matrix, then $\operatorname{rank}(A)+\operatorname{nullity}(A)=n$. Т 3.28: $A: m \times n$. (1) $\operatorname{rank}\left(A^{T} A\right)=\operatorname{rank}(A)$. (2) $A^{T} A$ is invertable iff $\operatorname{rank}(A)=n$. Def: Let S be a subspace of \mathbb{R}^{n} and let $\mathcal{B}=\left\{v_{1}, \ldots, v_{k}\right\}$ be a basis for S. Let $v \in S, v=c_{1} v_{1}+\ldots+c_{k} v_{k}$ where $v_{\mathcal{B}}=\left[c_{1} \ldots c_{k}\right]^{T}$ is called the coordinate vector of v with respect to \mathcal{B}. Def: $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear tranformation if $T(u+v)=T(u)+T(v)$ and $T(c u)=c T(u)$. $[T]=\left[T\left(e_{1}\right)|\ldots| T\left[e_{n}\right]\right] .(S \circ T)(v)=S(T(v))=[S][T] v$. Two transformations are considered inverses if $S \circ T=T \circ S=I_{n}$. For these we have $\left[T^{-1}\right]=[T]^{-1}$. Let A be an $n \times n$ matrix. A scalar λ is called an eigenvalue of A if there is a nonzero vector x such that $A x=\lambda x$. Such vectors e_{λ} are called eigenvectors. The collection of all eigenvectors associated with a λ is called the eigenspace denoted $E_{\lambda}=\operatorname{span}\left(\left\{e_{\lambda}\right\}\right)$ or $E_{\lambda}=\left\{t \cdot e_{\lambda}\right\}$. T 4.2: The determinant of a triangular matrix is the product of the entries on its main diagonal. T 4.3: Let A be an $n \times n$ matrix. (1) if A has a zero row (column) then $\operatorname{det}(A)=0$. (2) If B is obtained by interchanging two rows (or cols) then $\operatorname{det}(B)=-\operatorname{det}(A)$. (3) If A has two identical rows (or cols) $\operatorname{det}(A)=0$. (4) If B is obtained by multiplying a row of A by k then $\operatorname{det}(B)=k \operatorname{det}(A)$. (5) If A, B, C are identical except that the $i^{\text {th }}$ row (column) of C is the sum of the $i^{\text {th }}$ rows (cols) of A and B, then $\operatorname{det}(C)=\operatorname{det}(A)+\operatorname{det}(B)$. If B is obtained by adding a multiple of one row (column) of A to another row (column) then $\operatorname{det}(B)=\operatorname{det}(A)$. T 4.8: $A, B: n \times n$. Then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. T 4.7: $A: n \times n \cdot \operatorname{det}(k A)=k^{n} \operatorname{det}(A)$. T 4.9: If A is invertable, $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$. T 4.10: $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$. T 4.11:A:n×n invertable and $A x=b \rightarrow x_{i}=\frac{\operatorname{det}(A,(b))}{\operatorname{dec}(A)}$ where $A_{i}(b)$ means replace the $i^{\text {th }}$ column by b. Def: The adjoint is the transpose of the matrix of cofactors (the det(submatrix)) So $C_{11}=\operatorname{det}\left[a_{22} \ldots a_{2 n} ; a_{n 2} \ldots a_{n n}\right]$. $\operatorname{det}(A-\lambda I)=0$ (Characteristic Polynomial). To find the eigenvectors find the null space of $A-\lambda I$ also called the eigenspace E_{λ}. Find the basis for the space. Define algebraic multiplicity to be its multiplicity as a root of the characteristic equation. Define geometric multiplicity of an eigenvalue to be $\operatorname{dim}\left(E_{\lambda}\right)$. T 4.15 The eigenvalues of a triangular matrix are the entries on its main diagonal. T 4.16 A square matrix A is invertable iff 0 is not an eighenvalue of A. T 4.17: Let A be an $n \times n$ matrix then: A is invertable $\leftrightarrow A x=b$ has a unique solution $\leftrightarrow A x=0$ only has a trivial solution $\leftrightarrow \operatorname{rref}(A)=I \leftrightarrow A$ is the product of elementary matrices $\leftrightarrow \operatorname{rank}(A)=n \leftrightarrow \operatorname{nullity}(A)=0 \leftrightarrow$ the column vectors of A are Lin. Ind. \leftrightarrow the column vectors span $\mathbb{R}^{n} \leftrightarrow$ the column vectors are a basis for $\mathbb{R}^{n} \leftrightarrow \operatorname{rows}(\mathrm{~A})$ are Lin. Ind. $\leftrightarrow \operatorname{rows}(\mathrm{A})$ span $\mathbb{R}^{n} \leftrightarrow \operatorname{rows}(\mathrm{~A})$ form a basis for $\mathbb{R}^{n} \leftrightarrow \operatorname{det}(A) \neq 0 \leftrightarrow 0$ is not an eigenvalue of A. T 4.18: Given $A \in M_{n \times n}$ with eigenvalue λ and eigenvector x, then (a) For any positive integer n, λ^{n} is an eigenvalue of A^{n} with corresponding eigenvector x (b) If A is invertable then $1 / \lambda$ is an eigenvalue of A^{-1} with corresponding eigenvector x (c) For any integer n, λ^{n} is an eigenvalue of A^{n} with eigenvector= x. T4.19: $A \in M_{n \times n}$, with eigenvectors $v_{1}, \ldots v_{m}$. If $x \in R^{n}$ that can be expressed as $x=c_{1} v_{1}+\ldots+c_{m} v_{m}$, then for any integer $k, A^{k} x=c_{1} \lambda_{1}^{k} v_{1}+\ldots+c_{m} \lambda_{m}^{k} v_{m}$. 4.4. D: A is similar to B if ther is an invertable matrix P such that $P^{-1} A P=B$ denoted $A \sim B$. Note P is not unique, let $A=I$. \sim is an equivalence relation $(A \sim A, A \sim B \rightarrow B \sim A, A \sim B$ and $B \sim C \rightarrow A \sim C)$. T4.22: If $A \sim B$ then (a) $\operatorname{det}(A)=\operatorname{det}(B)$, (b) A is invertable iff B is invertable, (c) $\operatorname{rank}(A)=\operatorname{rank}(B)$, (d) A and B have the same characteristic polynomial, (e) A and B have the same eigenvalues. D: An $n \times n$ matrix A is diagonalizable if there is a diagonal matrix D such that $A \sim D$ or $P^{-1} A P=D$. T4.23 A is diagonalizable if and only if A has n Lin. Ind. eigenvectors. Where P is made up of the Lin. Ind. eigenvectors and the entries of D are made up of the corresponding eigenvalues. T4.24: If $\lambda_{1}, \ldots, \lambda_{k}$ are distinct eigenvalues of A and \mathcal{B}_{i} is the basis for the eigenspace $E_{\lambda_{i}}$, then $\mathcal{B}=\mathcal{B}_{1} \cup \ldots \cup \mathcal{B}_{k}$ is Lin. Ind.. T4.25: If $A_{n \times n}$ has n distict eigenvalues, then A is diagonalizable. L4.26: If $A_{n \times n}$, then for each eigenvalue, the geometric multiplicity \leq algebraic multiplicity. T4.17: $A_{n \times n}$ is diagonalizable $\leftrightarrow \mathcal{B}$ in (T4.24) contains n vectors. algebraic multiplicity $=$ geometric multiplicity for each eigenvalue. 5.1: D Orthogonal set if $v_{i} \cdot v_{j}=0 \forall i \neq j$. T5.1: If $\left\{v_{1}, \ldots v_{k}\right\}$ is an orthogonal set, then the vectors are Lin. Ind.. D: An orthogonal basis for a subspace is also an orthogonal set. T5.2: Let $\left\{v_{i . k}\right\}$ be an orthogonal basis for W. $w \in W \rightarrow w=c_{1} v_{1}+\ldots+c_{k} v_{k}$ where $c_{i}\left(w \cdot v_{i}\right) /\left(v_{i} \cdot v_{i}\right)$ (projection). D: An orthonormal set is an orthogonal set of unit vectors. An orthonormal basis for a subspace W of R^{n} is a basis of W that is an orthonormal set. T5.3: Let $\left\{q_{1 . k}\right\}$ be an orthonormal basis for W. Then $w \in W \rightarrow w=\left(w \cdot q_{1}\right) q_{1}+\ldots+\left(w \cdot q_{k}\right) q_{k}$ is unique. T5.4: The cols of an $m \times n$ matrix Q form an orthonormal set iff $Q^{T} Q=I_{n}$. D:An $n \times n$ matrix whose cols form an orthonormal set is called an orthogonal matrix $\rightarrow Q^{-1}=Q^{T}$. T5.6: Q is orthogonal $\leftrightarrow\|Q x\|=\|x\| \leftrightarrow Q x \cdot Q y=x \cdot y$. T5.7: Q orthogonal matrix \rightarrow rows form an orthonormal set. T5.8: Let Q be an orthogonal matrix then (a) Q^{-1} is orthogonal. (b) $\operatorname{det}(Q)= \pm 1$. (c) If λ is an eigenvalue of Q then $|\lambda|=1$. (d) If Q_{1} and Q_{2} are orthogonal $n \times n$ matrices, then so is $Q_{1} Q_{2}$. D Let W be a subspace of R^{n}. We say that a vector v in R^{n} is orthogonal to W if v is orthogonal to every vector in W. The set of all vectors that are orthogonal to W is called the ortogonal complement of W, denoted W^{\perp}. That is $W^{\perp}=\left\{v \in R^{n}: v \cdot w=0\right.$ for all $\left.w \in W\right\}$. T5.10: $(\operatorname{row}(A))^{\perp}=\operatorname{null}^{(A)}(A)$ and $\left.(\operatorname{col}(A))^{\perp}=\operatorname{null}^{\left(A^{T}\right.}\right)$. D: $\operatorname{proj}_{w}(v)=\operatorname{proj}_{u_{1}}(v)+\ldots+\operatorname{proj}_{u_{k}}(v)$. Then $\operatorname{perp}_{w}(v)=v-\operatorname{proj}_{w}(v)$. T5.11: $v=w+w^{\perp}$ where w and w^{\perp} are unique. T5.13: If W is a subspace of R^{n} then $\operatorname{dim} W+\operatorname{dim} W^{\perp}=n \rightarrow \operatorname{rank}(A)+\operatorname{nullity}(A)=n$. T5.15: Gram-Schmidt process: Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a basis for a subspace W of R^{n} and define the following: $v_{1}=x_{1}, v_{k}=x_{k}-\sum_{i=1}^{k-1}\left(\left(v_{i} \cdot x_{i}\right) /\left(v_{i} \cdot v_{i}\right)\right) v_{i}$ for each $1<i \leq n$. The the set $\left\{v_{1}, \ldots, v_{n}\right\}$ is an orthogonal basis for W. D : A square matrix A is orthogonally diagonalizable if there exists an orthogonal matrix Q and a diagonal matrix D such that $Q^{T} A Q=D$. T5.17 If A is diagonalizable, then A is symmetric: $Q^{T} A Q=D \rightarrow A=Q D Q^{T}, A^{T}=\left(Q D Q^{T}\right)^{T}=\left(Q^{T}\right)^{T} D^{T} Q^{T}=Q D Q^{T}=A$. T5.18lf A is a real symmetric matrix, then the eigenvalues of A are real. T5.19: If A is symmetric, then any two eigenvectors corresponding to distinct eigenvalues of A are orthogonal. T5.20 (Spectral Theorem) Let A be an $n \times n$ real matrix. Then A is symmetric if and only if it is orthogonally diagonalizable. (Spectral Decomposition): $A=Q D Q^{T}=\left[q_{1} \ldots q_{n}\right] \lambda_{1 . n} I Q^{T}=\lambda_{1} q_{1} q_{1}^{T}+\ldots+\lambda_{n} q_{n} q_{n}^{T}$. 6.1: A vector space is a field ($V,+, \cdot$) (1)+closure, (2)+commutativity (3)+associativity (4) $\exists 0 \in V$ (5)additive inverses $u+(-u)=0(6) \cdot c l o s u r e ~(7) ~ c(\vec{u}+\vec{v})=c \vec{u}+c \vec{v}(8)(c+d) \vec{u}=c \vec{u}+d \vec{u}(9) c(d \mathbf{u})=(c d) \mathbf{u}$ (10) $1 u=u$. D: Vector subspace has the same def= closure under addition and scalar multiplication. 6.2 D : linear dependence: Given $\left\{v_{1 . k}\right\}$ then for $c_{1} \ldots c_{k}$ at least one of which is non-zero $c_{1} v_{1}+\ldots+c_{k} v_{k}=0 \rightarrow$ lin. dep.. D : A set S of vectors in a vector space V is lin. dep. if it contains finitely many lin. dep. vectors. T6.6: $[u+v]_{B}=[u]_{B}+[v]_{B}$, $[c u]_{B}=c[u]_{B}$. T6.7: Let $B=\left\{v_{1 . n}\right\}$ be a basis for a vector space V and let u_{1}, \ldots, u_{k} be vectors in V. Then $\left\{u_{1}, \ldots, u_{k}\right\}$ is Lin. Ind. in V if and only if $\left\{\left[u_{1}\right]_{B}, \ldots,\left[u_{k}\right]_{B}\right\}$ is Lin. Ind. in R^{n}. T6.10: Let V be a vector space with $\operatorname{dim} V=n$. Then (a) Any Lin. Ind. set in V contains at most n vectors. (b) Any spanning set for V contains at least n vectors. (c) Any Lin. Ind. set of exactly n vectors in V is a basis for V. (d) Any spanning set for V consisting of exactly n vectors is a basis for V. (e) Any linearly indpendent set in V can be extended to a basis for V. (f) Any spanning set for V can be reduced to a basis for V. 6.3: Let $\mathcal{B}=\left\{u_{1 . n}\right\}, \mathcal{C}=\left\{v_{1 . n}\right\}$ be bases for a vector space V. The $n \times n$ matrix whose cols are the coordinate vectors $\left[u_{1}\right]_{C}, \ldots,\left[u_{n}\right]_{C}$ of vectors in \mathcal{B} with respect to C is denoted by $P_{\mathcal{C - B}}$ and is called the change of basis matrix from B to C : $P_{C-B}=\left[u_{1}\right]_{C}, \ldots,\left[u_{n}\right]_{C}$. (a) $\mathrm{P}_{C-B}[x]_{B}=[x]_{C}$ in V. (b) P_{C+B} is the unique matrix P with the property that $P[x]_{B}=[x]_{C}$ for all $x \in V$. (c) P_{C-B} is invertible and $\left(P_{C-B}\right)^{-1}=P_{B-C}$.
 $\operatorname{range}(T)=\{T(\mathbf{v}): \mathbf{v} \in V\}, \mathrm{T} 6.18 \operatorname{ker}(T)$ is a subspace, $\operatorname{range}(T)$ is a subspace, $\mathrm{D}: \operatorname{rank}(T)=\operatorname{dim}(\operatorname{range}(T)), \operatorname{nullity}(T)=\operatorname{dim}(\operatorname{ker}(T)), \mathrm{T} 6.19: \operatorname{rank}(T)+\operatorname{nullity}(T)=\operatorname{dim}(V)$. D: A linear transformation $T: V \rightarrow W$ is called 1-to-1 if T maps distinct vectors in V to distinct vectors in W. If the $\operatorname{range}(T)=W$, then T is called onto. T is 1-to- 1 if $\forall u, v$ $u \neq v \Rightarrow T(u) \neq T(v)$ or $T(u)=T(v) \Rightarrow u=v$. T is onto if $\forall w \in W, \exists v \in V$ s.t. $w=T(v)$. T6.20: A linear transformation $T: V \rightarrow W$ is 1-to-1 iff $\operatorname{ker}(T)=\{\mathbf{0}\}$. T6.21: Let $\operatorname{dim}(V)=\operatorname{dim}(W)=n$. Then a lin. trans. $T: V \rightarrow W$ is 1 -to-1 iff it is onto. Let $T: V \rightarrow W$ be a 1 -to- 1 linear transformation, If S is a set of Lin. Ind. vectors in V, then $T(S)$ is a set of Lin. Ind. vectors in W. (do it with $\operatorname{dim} V=\operatorname{dim} W=n$, and $|S|=n$, you get a basis to a basis.) T6.24: A Lin. Trans. is invertible iff it is 1-to-1 and onto. D: A Lin Trans. is called a isomorphism if it is 1 -to-1 and onto. If $\exists T: V \rightarrow W, 1$-to-1, onto, then V is isomorphic to W denoted $V \cong W$. T6.25 V is isomorphic to W iff $\operatorname{dim} V=\operatorname{dim} W$.

