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Constraint Datalog holds an increasing role in Trust Management. We discuss

several Trust Management systems and give a description of the environment and

requirements for Trust Management. Constraint Datalog using addition constraints and

approximation theory provides an expressive semantic with which to describe security

policies for credentials, delegations and authorizations. Approximation theory allows

halting in Constraint Datalog over addition constraints. We use the decision problem

of Diophantine equations to show that Constraint Datalog over addition constraints is

complete. Combining these two concepts provides an approximately complete, safe

language. The problem of constant additions to closed languages provides reasons for

using an approximately complete, safe language for Trust Management. Semantics for

the Role-based Trust Management framework (RT) are given in Constraint Datalog over

addition constraints including an alternate form of a threshold policy.
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Chapter 1: Introduction

Trust Management is an approach to access control in decentralized, distributed systems

with access control decisions based on policy statements made by multiple principals

[13]. Decentralized means that an organization involved in Trust Management may

have several geographical locations where Trust Management will be required. The

fact that they are distributed means that Trust Management may span more than one

organization. If there is more than one organization, there will be multiple principals

providing authentication and authorization.

Much of the research in the area of Trust Management centers around policy

expressiveness. As the different frameworks evolved, different security policy situations

were suggested that were not expressible in the current languages. This lead to changes

or additions to the languages which were in turn updated in a cycle of more research.

One may argue that a complete language is not needed as security is certainly a finite

discipline with well-known and studied domains. However, computer science is a fast

changing field, and what may be adequate today will be obsolete tomorrow.

A Turing-complete language solves the problem of constantly adding capabilities

to existing languages but introduces a seemingly insurmountable problem. Namely,

in a complete language it is possible to specify a problem for which no answer can

be obtained. Since security applications must halt with meaningful results, by using a

Turing-complete language we overcome one issue only to face another. Of course that
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depends on what the phrase "meaningful results" means. A formal definition of what that

means is given in Chapter 3.

Security languages and problems associated with them have been the driving force

for the ideas presented in this thesis. We propose that a policy language specification

is a variation of the problem expressed by Hilbert in his 10th problem. Namely that

a policy language expresses a broad subclass of problems, which by Davis, Putnam,

Robinson and Matiyasevich’s work [15] is Turing-complete hence not decidable. We

recognize that halting is absolutely necessary in security applications and propose the use

of Datalog with addition constraints to provide proof-based semantics that are expressive

(Turing-complete) and by using approximation theory also ensure halting. This provides

a sound basis on which security and Trust Management may be built while allowing

extensible semantics that are both approximately complete and safe. The concept of

an approximately complete, safe language is very important and it is introduced in

Chapter 4.

Approximation theory plays an important part by allowing us to bound the results of

any query with only addition constraints. This is vital to ensure halting and we give the

theory and an example as part of the background on approximation.

The rest of this thesis is presented as follows. Chapter 2 presents some background

information and history of Trust Management. In Chapter 3 we discuss the theory of

approximation and give an example. In Chapter 4 we show that Constraint Datalog

over addition constraints is Turing-complete and define the concept of an approximately

complete, safe language. Chapter 5 examines the Role-based Trust Management (RT)

family of languages and gives a translation to Datalog with constraints. In addition in
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Chapter 6 we analyze the complexity differences between RT statements and rules in

Datalog with constraints. This is followed in Chapter 7 by conclusions and future work.
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Chapter 2: Trust Management

Several different language and framework designs have been proposed to solve the Trust

Management problem. Section 2.1 provides a background look at these languages in the

approximate order in which they were proposed. Section 2.2 looks at the environment

and its requirements. The world of computers and security is dynamic. It would be the

depths of naivety to assume that a system will not change enough to allow new security

situations not previously considered. It is important to have an extensible framework. A

Turing-complete language guarantees extensibility for future policy problems. Section

2.3 introduces the problem of using a Turing-complete language as a semantic basis

for a security framework. Figure 2.1 gives an graphic overview of the history of Trust

management.

2.1 Background of Trust Management

Certificates, reviewed in 2.1.1, form the basis for several Trust Management languages.

Research at AT&T lead to two Trust Management applications, PolicyMaker, reviewed

in 2.1.2, and KeyNote, reviewed in 2.1.3.

2.1.1 Certificates

The concepts of the public key/private key infrastructure are the basis for certificates.

Diffie and Hellman created public key cryptography in 1976 [4] and the RSA algorithm

was invented by Rivest, Shamir and Adleman in 1977 [20]. Certificates became widely

used in the form of X.509 certificates for secure transactions across HTTP on the
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Figure 2.1: A brief history of Trust Management
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Internet. PGP certificates were also used for authentication of E-mail transactions.

Although X.509 certificates are hierarchical in nature and as such are not suited for Trust

Management, we will include a brief discussion here as an example of how certificates

are employed in the context of Trust Management. X.509 certificates contain several

basic elements as shown in Table 2.2.

Version Number
Serial number
Certificate holder’s distinguished name
Validity period
Certificate holder’s public key
Algorithm to use for communication
Certificate issuer’s name
Digital signature of the certificate authority

Figure 2.2: X.509 Fields

The version number indicates what version of the X.509 standard this certificate

complies with. The serial number is a unique number provided by the certificate authority

(CA) used to identify the certificate and to check revocation lists. The certificate holders

distinguished name is meant to be unique across the Internet and is usually associated

with a domain name. The validity period indicates when this certificate expires. The

certificate issuer’s name is the name of the CA that signed the certificate. These elements

are simple and have simple tasks.
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The certificate holder’s public key is part of an asymmetric public/private key pair.

They are asymmetric because information encrypted by a private key can only be

decrypted by the public key and vice versa. This allows secure communication from

anyone using the public key to the holder of the private key. The algorithm to use in

communication is the method the holder of this certificate is expecting when the public

key is used to encrypt communications. This is the basis for secure communication.

The digital signature guarantees that the CA has issued this certificate and that the

information contained in the certificate is valid. This concept is called non-repudiation,

which proves that the certificate in its current verified form came from the CA and can

be trusted. The digital signature is actually a one-way hash code of the certificate. Thus

you can check it against a calculated hash code of the certificate. If the two are the same,

you know that the certificate has not been tampered with and that if you use the public

key contained in the certificate to encrypt communications, then only the holder of the

private key can decrypt your communication.

2.1.2 PolicyMaker

PolicyMaker was the first Trust Management system [8]. It has policies and credentials

and allows any safe assertion language to be used. (An assertion language is a language

that allows the specification of a set of assertions.) An assertion has the form

source ASSERTS AuthorityStructWHERE Filter

Source is either a key or POLICY for local policies. Authoritystruct is the key of the

target of the assertion. Filters are just interpreted programs that determine if a string is
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accepted or rejected. The meaning of the assertion statement is that the source asserts

that the individuals identified in the AuthorityStruct have rights granted by the filter.

An application gives PolicyMaker a set of requested actions, policies and credentials

and PolicyMaker attempts to prove requested actions comply with the policies. The

major weakness of PolicyMaker is that much of the work in evaluating requests is left up

to the calling application. The filter language is not specified and the authentication of

certificates is not done by PolicyMaker.

2.1.3 KeyNote

KeyNote [1] overcomes some of the weaknesses of PolicyMaker and includes two

additional design goals: standardization and ease of integration. In KeyNotemore is done

by the Trust Management engine than in the calling application. Signature verification

is done by KeyNote, and a specific assertion language is used. An Action Environment

in the form of attribute = value pairs provide KeyNote with the relevant information

about an application’s security requirements. Since KeyNote was built on PolicyMaker

technology, it retains the same design principles of assertions and queries.

2.1.4 REFEREE

REFEREE [2] which stands for Rule-controlled Environment For Evaluation of Rules

and Everything Else was also based on PolicyMaker. It was designed to work with

PICS a W3C standard for rating web pages. Like PolicyMaker it accepted information

including PICS certificates and returned a value indicating whether the information

and policies allow or deny access. Unlike PolicyMaker, REFEREE provides a third
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alternative called unknown stating that it could not determine whether access is allowed.

REFEREE appears to be unique in this respect. In a way it recognizes that not everything

is true or false, but some things are unknown.

2.1.5 TPL

Trust Policy Language (TPL) [11] was designed at IBM as a role-based solution to

e-commerce Trust Management problems. TPL uses X.509 v3 certificates, the TPL

language, and Java. The TPL language component is defined in XML. The important

difference between TPL and PolicyMaker is that it allows negative rules preventing

access. We note that DTPL (Definite Trust Policy Language) [9] does not allow negative

rules. The primitive structure for TPL is a group. The syntax in XML is different enough

from PolicyMaker to warrant an example. Consider the policy in Figure 2.3 which is

from [11].

The first group defined is the originating retailer self. The second group, partner

includes anyone with a partner certificate signed by self. The third group, departments

includes partner certificates signed by the partner group. The last group defines the

customers group to be anyone with an employee certificate signed by the departments

group. The function tag defines constraints using AND, OR, NOT, GT(>), and LT(<).

For example, the <FUNCTION> tag is a constraint where the rank field on a customer

certificate is greater than 3.
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POLICY

GROUP NAME"self" /

GROUP NAME"partners"

RULE

INCLUSION ID"partner" TYPE"partner" FROM"self" /

/RULE

/GROUP

GROUP NAME"departments"

RULE

INCLUSION ID"partner" TYPE"partner" FROM"partners" /

/RULE

/GROUP

GROUP NAME"customers"

RULE

INCLUSION ID"customer" TYPE"employee" FROM"departments" /

FUNCTION

GT

FIELD ID"customer" NAME"rank" /

CONST3/CONST

/GT

/FUNCTION

/RULE

/GROUP

/POLICY

Figure 2.3: TPL Policy
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2.1.6 dRBAC

dRBAC (Distributed Role-based Access Control) [6] started as RBAC [21] in 1996 and

has expanded to be a fully distributed access control system. dRBAC concentrates on

highly dynamic coalition environments where the ability to adapt quickly, scale and find

credentials is needed. dRBAC distinguishes itself in the following three ways.

1. Third-party delegation of roles from outside a domain’s name space rely on an

explicit delegation of assignment.

2. Modulation of transferred permissions takes place using scalar value attributes

associated with roles.

3. Continuous monitoring of trust managements over long-lived interactions is

implemented.

In item (2) above, scalar value attributes are similar to parameterized roles in RT and

allow dRBAC to include ancillary information about the authorization such as bandwidth

restrictions.

2.1.7 SPKI/SDSI

SPKI/SDSI [5] is defined in RFC2693. It uses a localized naming scheme and uses

public keys to identify principals and local identifiers. These name-definition certificates

came from SDSI. Authorization certificates came from SPKI. Globally unique names

require globally unique identifiers for the organizations. That is easily accomplished by

prepending a URI to the beginning of local names.
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Although SPKI/SDSI shares many goals with Trust Management systems, Li points

out in [12] that much of the processing of certificates to authorize requests is left to

application developers. Hence SPKI/SDSI falls short of the Trust Management ideal.

2.1.8 Role-based Trust Management (RT)

RT [14] is a complete Trust Management system that uses certificates for naming and

includes authorization on the certificates. Only certificates and requests are required for

RT to accept or reject a request. In Chapter 5 we discuss RT in more detail.

2.2 Requirements for Trust Management

For the purpose of fully understanding the requirements of an open, decentralized,

distributed environment, it is necessary to define what is meant by such an environment,

and then incorporate these characteristics into the expressive capabilities of the Trust

Management system.

2.2.1 Description of the Environment

The first qualifier open refers to the ability for anyone to be able to make a request for

access or service to a supplier of the same. For example, anyone who has a valid user

name with an Internet provider can type in the URL http://etrade.com and be connected

to the site. In this example, fewer services are available to non-members. In order to

make use of the main brokerage and banking services provided by e-trade, it is necessary

to provide your e-trade user ID and password. The fact that non-members can gain access

to the login page of the e-trade service makes it open.
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The second qualifier, decentralized, refers to the various resources being located in

physically separate locations. An example of this would be the Yahoo site, which is

physically located on many different servers across the world.

The third qualifier distributed refers to the situation where independent organizations

enter into coalitions to share resources. While sharing resources, each autonomous

member retains ultimate authority over the resources it controlled prior to entering the

coalition. A familiar example of this would be the ubiquitous ATM unit. These are

decentralized in that one bank owns many ATMs located in different areas. They are also

distributed in that authorization is granted to account holders from other banks as well as

to account holders from the bank that owns the ATM.

Combining all three of these descriptors results in multiple resources that are located

in multiple locations, independently controlled by multiple services and open for requests

by the public. In these situations, the owners and requester may be unknown to each

other. The Trust Management System needs to protect both the service providers and

the user of the service. The Trust Management system must cover a wide variety of

applications without requiring a custom package for each. The ability to incorporate a

large range of security situations within a single Trust Management system is referred to

as the expressiveness of the Trust Management system.

We will address the issue of expressiveness by first describing the expanding needs

of the open, decentralized, distributed environment and showing how existing Trust

Management systems begin to falter in function.
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2.2.2 Requirements of the Environment

X.509 certificates fill several requirements of a Trust Management system. Among

these are secure communication between organizations and users and provision for

authentication of both the requester and the service provider. Although X.509 certificates

provide a distributed users database, it does not provide distributed authentication of that

database because the ultimate authority is the root certificate authority. X.509 certificates

can not authorize access unless all you are interested in is authenticating the user.

Because most Trust Management systems use certificates in some form or another, the

emphasis on distributed authorization can be seen in the following Trust Management

requirements.

1. An organization should have localized control of its resources. This entails granting

access and authority to parties known to the organization, e.g., owners, employees,

service personnel and contractors.

2. An organization should be able to grant either full or partial access and delegate

authority to other members of a coalition to which it belongs.

3. An organization should be able to have delegation of either full or partial access and

authority to the resources belonging to other members of a coalition to which it

belongs.

4. The Trust Management system should be able to operate regardless of the security

domains in place among members of a coalition such as hierarchical or group based

domains. Domains also pertain to the way security is administrated at any location.
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For example, whether a user is provided with a USB key or must use a password

system, the Trust Management system should be able to operate as a back-end

system to the application or system needing to verify authorization.

5. An organization should be able to enter into multiple coalitions independent of each

other but as interlaced as desired.

6. An organization should be able to delegate, not only the authorization but also the

right to delegate authorization. We call this nested trust delegation.

Requirements (4) and (6) are open ended in a way that can cause expressiveness

problems for current languages. One could argue that policies will only cover a finite

definable area, and that languages can be extended on a case by case scenario, which

has been the approach in Trust Management to this point. Certainly in the majority of

systems we can cover the cases where security needs to be supplied. To avoid constantly

changing a language or adding to it, we could use a Turing-complete language.

2.3 Problems with a Complete Language

A Turing-complete language suffers from the halting problem [16], and in security it is

absolutely necessary to halt in a reasonable amount of time. If we approximate the results

of a query to ensure halting, then it must not allow access beyond what is intended.

Datalog, which is based on First-order Predicate Logic easily accomplishes halting

because it operates under a closed world assumption. Essentially a proof is constructed

from the data D using a query Q to satisfy a policy R. If `Q,D R, then we can answer
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yes to the access request. But Datalog is not complete. Constraint Datalog with addition

constraints also has a proof based semantic, and it is a complete language as is shown in

Chapter 4. Using approximation we can overcome the difficulties of halting in a complete

language.
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Chapter 3: Approximation

Approximation theory allows a query to be approximated over a finite domain. In

Sections 3.1 and 3.2 we give the theory of approximation. In Section 3.3 we present an

example based on Sierpinsky’s Carpet.

3.1 Approximation Theory

Unlike relational databases where each query operates under a closed world assumption,

Constraint Datalog allows recursion that may not terminate [17]. A good example of

a query that may not terminate is the following pair of rules that define the difference

relationD.

D (x, y, z) : − x− y ≤ 0, − x+ y ≤ 0
z ≤ 0, − z ≤ 0

D (x, y, z) : − D (x0, y, z0) ,
x− x0 ≤ 1, − x+ x0 ≤ −1,
z − z0 ≤ 1, − z + z0 ≤ −1,

(3.1)

Approximation allows us to halt with an approximation by bounding the result of

addition constraints. This limits us to addition constraints, but as we will see later this

does not reduce the expressiveness of Constraint Datalog. We define the following two

modifications to addition constraints taken from [18].

Definition 3.1 Modification 1: We change in the constraint tuple the value of any

bound b to be themin(b, u). Given a query Q, an input database D and an upper bound

u, the query using this modification will be denoted Q(D)u.
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Definition 3.2 Modification 2: We delete from each constraint tuple any constraint

with a bound that is greater than u. Given a query Q, an input database D and an upper

bound u, the query using this modification will be denoted Q(D)u.

Using these two modifications we can express the important result that we can bound the

least fixed point of a Constraint Datalog query.

Theorem 3.3 For any Datalog query Q, input database D, and constant u > 0, the

following is true.

Q (D)u ⊆ lfp(Q (D)) ⊆ Q (D)u (3.2)

Further, Q (D)u and Q (D)
u can be computed in finite time.

Proof The Datalog bottom-up evaluation can be done followed by either modification

1, 2, or no modification if the constant bound b is less than u. If the rule is modified

by the first modification, the modified tuple implies the original one, or it implies an

unsatisfiable statement. If the result of the modification is false, then by definition it

is not part of Q (D)u. And so, by the definition of the least fixed point, all facts in

Q (D)u ⊆ lfp (Q (D)). If a rule is modified by the second modification, the result will

be a new fact of the same form except that it does not contain upper bounds. This allows

the addition of facts which need not be in lfp (Q (D)). However these new facts will

produce only facts that are subsumed by facts in Q (D)u. Thus for any number of rule

applications, the facts in Q (D)u are implied by previous facts obtained as part of the

lfp (Q (D)). Thus lfp (Q (D)) ⊆ Q (D)u.
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Since there is a finite number of different left-hand side atomic addition constraints

and since each rule application will change the bound a constant amount closer to the

lower bound, Q (D)u and Q (D)
u will both be evaluated in finite time.

3.2 Defining Meaningful Results for Trust Management

Meaningful results for a Trust Management system is defined in terms of Theorem 3.3

using Modification 1. Namely the results of the approximation must contain only true

statements.

Definition 3.4 A result from a Trust Management system is considered meaningful

if it does not grant more privileges than have been granted by the principal responsible

for the resource being requested.

3.3 Fractal Example

Applying approximation to Fractals [7] is a natural problem. Fractals by nature show ever

more detail as we zoom in. In fact we can zoom in an infinite amount in a mathematical

model. When fractals are generated on screens or in print, they are approximations of

the mathematical definitions used to generate them. The most interesting property about

fractals is their repetition on a smaller and smaller scale.

Sierpinski’s carpet [7] is a special fractal that can be approximated by starting with

the smallest scale and building the fractal up to the limit of approximation. Consider the

Constraint Datalog program written for MLPQ [19] in Table 3.1.
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begin%Boxes%
Choice(m,n) :- m=0, n=0.
Choice(m,n) :- m=0, n=1.
Choice(m,n) :- m=0, n=2.
Choice(m,n) :- m=1, n=0.
Choice(m,n) :- m=1, n=2.
Choice(m,n) :- m=2, n=0.
Choice(m,n) :- m=2, n=1.
Choice(m,n) :- m=2, n=2.
D(x,y,z) :- x-y=0, z=0.
D(x,y,z) :- D(x1,y,z1), x-x1=1, z-z1=1.
M(x,y,z) :- x=0, y=0, z=0.
M(x,y,z) :- M(x1,y,z1), D(z,z1,y), x-x1=1.
M(x,y,z) :- M(x,y1,z1), D(z,z1,x), y-y1=1.
/* Creates the first set of base lines length=1,3,9...*/
BaseLine(x1,x2):- x1=0, x2=1.
BaseLine(a1,d3):- BaseLine(a1,d1), l=3, M(l,d1,d3).
Box(x,y,s) :- BaseLine(x,b), y-x=0, b-s=0.
Box(x,y,s) :- Box(a,b,l), k=3, M(k,s,l), Choice(m,n),

M(s,m,z1), D(x,a,z1),
M(s,n,z2), D(y,b,z2).

XBox(a1,c1,s) :- Box(a,c,l), k=3, M(k,s,l), D(a1,a,s),
D(c1,c,s).

fractal1(id,x,y) :- id=1, Box(a,b,l), x-a>=0, D(x1,l,a),
x-x1<=0, y-b>=0, D(y1,l,b), y-y1<=0.

fractal2(id,x,y) :- id=2, XBox(a,b,l), x-a>=0, D(x1,l,a),
x-x1<=0, y-b>=0, D(y1,l,b), y-y1<=0.

end%Boxes%

Table 3.1: MLPQ Fractal Program
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The Difference relation equation (3.1) is really the basis for approximation. We do

not allow the calculation of differences for some maximum bound in z. In Sierpinski’s

carpet the Multiplication relation M(x,y,z) is based on D(x,y,z). We use approximation

and M(x,y,z) to find the width and height of the biggest box in the BaseLine(x1,x2)

relation. Here we just find the largest power of 3 that approximation allows. Based on

these lengths we create the first set of boxes and use a recursive rule to create the bottom,

left point and width and height of each box. XBox(a1,c1,s) creates the interior boxes of

the fractal. Running the above program on MLPQ using an approximation value of 27,

we get Sierpinski’s carpet as shown in Figure 3.1.

Figure 3.1: Sierpinski’s Carpet
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Chapter 4: Turing Completeness of

Constraint Datalog

Turing’s definition of an algorithm gives a basis on which other languages can be

judged. A language is Turing-complete if it can express everything that a Turing machine

can express. That is important because if a language is Turing-complete, then it can

express everything that a computer is capable of expressing. To show that a language

is Turing-complete it is necessary to define a reduction from a Turing Machine to the

language in question. Alternately, a Turing-complete language can be reduced to the

language in question. This second method is used to show that a Constraint Datalog is

Turing-complete using Diophantine equations.

4.1 Turing Machines

A Turing machine [10] is an abstract computer. It has memory in the form of a tape that

starts at the machine and has an infinite supply. That is unique because a Turing machine

will never run out of memory. The tape is divided into cells that contain symbols from a

finite set A = {α1, α2, ..., αw}. Different Turing machines may have different alphabets,

but all Turing Machines will have a special symbol ∗ to mark the start of the tape.

Turing Machines also contain a symbol Λ for an empty cell. The Turing machine has a

read/write head that reads and writes to a cell on the tape. In addition, the head can move

left or right across the tape.
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At any given time, the machine is in one of finitely many states that are denoted by

q1, q2, ..., qv. The action of the machine is totally determined by the current state and the

symbol scanned by the head. In a single step, the machine can change the symbol in the

current cell or move one cell to the right or left and change state. Given a state qi and a

symbol read from the tape αj the next state is defined as:

qiαj ⇒ αA(i,j)D (i, j) qQ(i,j) (4.1)

where

• αA(i,j) is the symbol to be written

• D (i, j) represents the motion of the head such that D (i, j) ∈ {L,R, S} for left,

right and stay.

• qQ(i,j) is the new state.

4.2 Diophantine Equations are Turing-complete

Here we present the sequence of theorems and thoughts that lead Matiyasevich [15]

to answer that Hilbert’s 10th problem, that is, the decision problem for Diophantine

equations, is undecidable. The consequence of solving that major question has many

other applications and consequences. Specifically we see that Diophantine equations are

used to express listable sets (see Definition 4.3). That is, listable is a sufficient condition

for a set to be Diophantine. This remarkable result proves that Diophantine sets are

expressively equivalent to a Turing machine. We then show that Constraint Datalog
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over addition constraints is Turing-complete. We conclude that Constraint Datalog with

approximation over addition constraints is safe.

A Diophantine equation is an equation of the form

D (x1, ..., xm) = 0, (4.2)

whereD is a polynomial with only integer coefficients and integer variables.

It is important to note that this decision problem is equivalent to allowing only natural

numbers. Consider an equation of the form:

D (p1 − q1, ..., pm − qm) = 0 (4.3)

where pi, qi ∈ Z+. It is easy to see that if we can find a solution to equation (4.3) then

we have found a solution to equation (4.2) by setting xi = pi − qi for 1 ≤ i ≤ m. It

is equally true that if we have an equation of form in equation (4.2), then there exists

an equivalent equation with only natural number solutions. Therefore the decision

problem for Diophantine equations with integers is equivalent to the decision problem

for Diophantine equations with natural numbers.

Families of Diophantine equations are denoted by the existence of parameters

a1, ..., an and have the form:

D (a1, ..., an, x1, ..., xm) = 0. (4.4)

We consider the setM of all n-tuples ha1, ..., ani for which our parametric equation

has a solution, that is

ha1, ...ani ∈M⇐⇒ ∃x1...xm {D (a1, ..., an, x1, ..., xm) = 0} (4.5)

Sets having such a representation are called Diophantine.
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In studying Hilbert’s tenth problem it was natural to take an in-depth look at the

properties for these sets. What kind of sets can we find and how can we list them? One

important property is that Diophantine sets are listable.

Definition 4.1 [15] A setM is listable or effectively enumerable, if there exists an

algorithm which would print in some order, possibly with repetitions, all the elements of

the setM .

Martin Davis conjectured that Diophantine sets and listable sets coincide.

Conjecture 4.2 [15] A set S is Diophantine if and only if S is listable.

This implies that any set that is listable can be obtained from a single polynomial. Davis’s

conjecture also implied the existence of a Universal parameterized Diophantine equation

that for some parameters would produce any specific listable set. This is the result

that is most interesting to us. If Conjecture 4.2 is true, then Diophantine equations are

expressively equivalent to Turing machines, and there exists a universal parameterized

Diophantine equation that is expressively equivalent to a universal Turing machine.

Martin Davis made the first strides toward proving his conjecture. He showed the

following theorem.

Theorem 4.3 Every listable setM has a representation of the form

ha1, ..., ani ∈M⇔ ∃z∀y ≤ z∃x1...xm {D (a1, ..., an, x1, ..., xm, y, z) = 0} (4.6)

This became known as the Davis normal form. All that was left to do was remove the last
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universal qualifier. Davis, Putnam and Robinson obtained an exponential Diophantine

representation for every listable set in the following theorem.

Theorem 4.4 For every listable setM of n-tuples of non-negative integers there is

a representation of the following form

ha1, ..., ani ∈M⇔ ∃x1...xmEL (a1, ..., an, x1, ..., xm) = ER (a1, ..., an, x1, ...xm)

where EL and ER are exponential polynomials.

Thus we have a purely existential representation for all listable sets. But it is not

Diophantine, but rather it is exponentially Diophantine. One of the more interesting im-

plications of Theorem 4.4 is that you can fix the number of unknowns for any arbitrary

exponential Diophantine equation to be as low as 3 unknowns.

Based on this work Julia Robinson found a condition sufficient for the existence of a

Diophantine representation.

There is a polynomial A (a, b, c, z1, ..., zm) such that

ab = c− ∃z1...zw {A (a, b, c, z1, ..., zm) = 0} (4.7)

provided that there is an equation

J (u, v, y1, ..., yw) = 0 (4.8)

such that in every solution we have u < vv and for every k there is a solution such that

u > vk.

Now to prove Conjecture 4.2 it only remained to show that there exists a single

relation of exponential growth defined by a Diophantine equation. Yuri Matiyasevich

who finally proved this using the well known Fibonacci numbers. The relation between
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u and v in the Julia Robinson relation is

v = F2u (4.9)

where F1, F2, ... is the well known Fibonacci sequence:

0, 1, 1, 2, 3, 5, 8, ... (4.10)

This proved Conjecture.4.2 resulting in the in the following theorem.

Theorem 4.5 [15] Every listable set M of n-tuples of non-negative integers has a

Diophantine representation, that is

ha1, ..., ani ∈M⇔ ∃x1...xm {D (a1, ..., an, x1, ..., xm) = 0} (4.11)

for some polynomial with integer coefficients.

The definition of listable sets in Definition 4.3 and the results from Theorem 4.5 allows

us to conclude that Diophantine equations are Turing-complete.

4.3 Expressing Diophantine Equations in Constraint Datalog

Constraint Datalog over addition constraints with approximation provides the ability

to express Diophantine equations and to approximate the results. The interesting result

here is that one can approximate results to the same level that a computer is capable of

approximating results. Again here the limit is storage space. First we define a difference

relation and a multiplication relation in Table 4.1

Given any Diophantine equation of the form D (a1, ..., an, x1, ...xm) with k terms we

collect the expressions in each term into a single variable Ti for 1 ≤ i ≤ k using the



28
D(x,y,z) :- x-y=0, z=0.
D(x,y,z) :- D(x1,y,z1), x-x1=1, z-z1=1.
M(x,y,z) :- x=0, y=0, z=0.
M(x,y,z) :- M(x1,y,z1), D(z,z1,y), x-x1=1.
M(x,y,z) :- M(x,y1,z1), D(z,z1,x), y-y1=1.

Table 4.1: Difference and Multiplicaton Relations

multiplication relation. If we expand exponents to multiplication in each term, we write

the collection as follows.

Given a term with c constants and variables vl after the expansion we can collect

the constants and variables by writing a series of multiplication statements in Datalog.

Ti,1 = v1v2, Ti,2 = Ti,1v3, ..., Ti,c−1 = Ti,c−2vc. In general we write

Ti,l = Ti,l−1vl+1 for 2 ≤ l ≤ c− 1 (4.12)

Next we collect successive term variables Ti into expression variables Ej for

1 ≤ j ≤ k−1.We setE1 = T1−(±T2) for the first expression andEj = Ej−1−(±Tj+1).

In Datalog we write this

D (Ej,Ej−1,±Tj+1) for 2 ≤ j ≤ k − 1 (4.13)

Example 4.6 Given the equation A (x, y, z) = 3xy2 + 2z, solve A (x, y, z) = 0.

Using the Difference and Multiplication examples above we write

A (x, y, z) : − M (3, x, t11)
M (t11, y, t12)
M(t12, y, t13)
M (2, z, t21)
M (t21,−1, t22)
D (t13, t22, 0)

We illustrate the procedure in a parse tree as shown in Figure 4.1. The circles denote

either the Multiplication or Difference operations at each step.
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Figure 4.1: Parse Tree for Diophantine Equations

In this manner we can write any Diophantine equation in a finite number of steps

using approximation. The reduction from a Diophantine equation to Constraint Datalog

is linear in the number of multiplication, addition and subtraction operations. Therefore

we conclude that Constraint Datalog with addition constraints is Turing-complete.

Languages that are both complete and safe with approximation have real value in the

area of security and Trust Management. We propose the following definition.

Definition 4.7 The Semantics of a language that uses approximation to terminate

an evaluation of a program while retaining meaningful results over a definable finite

subdomain of the original domain of the program and is expressively Turing complete is

an approximately complete, safe language.
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Datalog over addition constraints with approximation is an approximately complete, safe

language.

From Theorem 4.5 we know that Datalog with addition constraints can express

any Diophantine set and thus is Turing complete. From Theorem 3.3 we know that

Datalog over addition constraints with approximation uses approximation to terminate an

evaluation of a program while maintaining meaningful results as defined in Definition

3.4. The difference relation equation (3.1) provides the definition of the subdomain

of integers. Therefore Datalog over addition constraints with approximation is an

approximately complete, safe language.

An approximately complete, safe language allows the language to perform a graceful

termination instead of a machine imposed termination due to the lack of memory. To

control termination requires either direct user specification or machine/operating system

cooperation with the language. This leads us to define one last definition.

Definition 4.8 An approximately complete, safe system exists if there exists

some set of parameters provided by the hardware, operating system or other source to

an approximately complete, safe language that allows the language to determine an

appropriate approximation threshold.

As a thought example we could ask an approximately complete, safe system to give us a

representation of π. The system would then determine, based on the hardware, operating

system and parameters such as time constraints, which are set by the operator, how many

digits it could calculate.

Definitions 4.7 and 4.8 will form the basis for future research.
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Chapter 5: Translating a Trust Management

Framework into Constraint Datalog

5.1 The RT Family of Trust Management

RT is a role-based trust-management family of languages part of which is based on

Datalog with constraints. The RT language includes principals and roles. A principal

may be a uniquely identified individual or process and may issue policy statements

and make requests. At any time RT is capable of determining which principal made a

particular statement or request. Roles are defined by a PrincipalName followed by a

RoleName. Roles act as a layer between principals and permissions and are similar to

groups. Given KA.R, we say that principal KA defines the role R. Each entity has the

authority to define a role and the members of that role. A role is defined by one or more

statements with the effect being the union of the groups defined. Before we give the

syntax and semantics of RT lets look at the types of delegation possible.

• RT0 supports localized authorities for roles, role hierarchies, delegation of

authority over roles, attribute based delegation of authority, and role intersections.

• RT1 adds parameterized roles to RT0

• RT2 adds logical objects to RT1
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• RT T provides manifold roles and role-product operators, which can express

threshold and separation-of-duty policies.

• RTD provides delegation of role activations, which can express selective use of

capacities and delegation of these capacities.

5.1.1 RT0 Syntax

Four different types of statements are necessary to define all the role types available in

RT0.

Simple Member: This defines the principalKD to be a member of the roleKA.R

KA.R← KD (5.1)

Simple Containment: This defines the role KA.R to contain every principal that is a

member of the roleKB.R1.

KA.R← KB.R1 (5.2)

Linking Containment: This definesKA.R to contain all members ofKB.R2 in which

KB is a member ofKA.R1.

KA.R← KB.R1.R2 (5.3)

Intersection Containment: This defines KA.R to contain the intersection of all the

rolesKB1 .R1...KBk
.Rk

KA.R← KB1 .R1 ∩ ... ∩KBk
.Rk (5.4)
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To complete the picture, the two types of statements below specify the syntax for

delegation. Delegations can be created by combinations of the previous four statements

but were added for clarity.

Simple Delegation: This means that KA delegates authority over R to KB. We can

optionally impose that KB can only authorize existing members of KC .R2. If KC .R2

does not exist, the imposition does not apply.

KA.R⇐ KB : KC .R2 (5.5)

This implies

LogKA.R← KB.R ∩KC .R2 (5.6)

Linking Delegation: This means that KA.R delegates authority over R to members

ofKA.R2. Optionally the delegation is restricted to members ofKC .R2.

KA.R⇐ KA.R1 : KC .R2 (5.7)

This implies

KA.R← KA.R1.R ∩KC .R2 (5.8)

5.1.2 RTC
1 Adding Parameterized Roles

RTC
1 also provides parameterized roles. Parameters are an extension of RT0. The format

is similar to the statements in Section 5.1.1 with the exception that a role takes the form

r (p1, ..., pn), in which r is the role name and pj can take one of the following three forms.

name = c
name =?X [∈ S]
name ∈ S
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These respectively mean that a name equals to 1) a constant, 2) a variable with optional

requirement that it be in a set S, and 3) is in a set S.

The form of the parameters determines their function. Parameterized roles can

represent relationships between entities or represent access permissions that take

parameters identifying resources and access modes [4]. For instance,

Store.Employee(Manager = ”Steve”)← ”Charlie”

states that Charlie is an employee and his manager is Steve. At some point Steve could

give Charlie a pay increase, because he is listed as Charlie’s manager. Another example

is:

Web.perm(host ∈ descendant(’unl.edu’), port ∈ [0..1024])← ”Charlie”

Which shows how the element operator is used with two different types of constraint

domains. The expression means that Charlie is given access to any host in the unl.edu

domain on privileged ports. In this example host is in a tree domain, and port is in a

range domain.

5.1.3 RT2 Logical Objects

Logical objects are added in the guise of o-sets which perform similar duties to roles

except they do not contain principals, they apply to logical objects. This means that we

can group logical objects together with principals and permissions. An o-set id has a

specific type τ associated with it. The body of a o-set definition can have a value of base

type τ , another o-set of type τ , a linked o-set similar to role linking or an intersection of

k o-sets. These rules are as follows:
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Value assignment: This means that v is a member of the o-set A.o. Note that v could

be an expression that evaluates to a value of type τ .

A.o (p1, ..., pn)← v (5.9)

o-set assignment: This just adds the contents of one o-set to another.

A.o (p1, ..., pn)← B.o1 (v1, ..., vm) (5.10)

Linked o-set: Here the o-set o contains any logical object that is defined by any

principal defining o1 in A’s role r1.

A.o (p1, ..., pn)← A.r1 (t1, ..., tl) .o1 (v1, ..., vm) (5.11)

Intersection of o-sets: Here we just define the intersection of k o-sets

A.o (p1, ..., pn)← B1.o1 (v1, ..., vm1) ∩ ... ∩Bk.o1 (v1, ..., vmk
) (5.12)

Consider the example given in [14].

Example 5.1 Alpha allows the manager of the owner of a file to access that file:

Alpha.read (?F )← Alpha.manager (?E : Alpha.owner (?F ))

Here ?E is assigned the output of Alpha.owner (?F ) for every file ?F .

5.1.1 RT T Manifold Roles

Manifold roles extends the notion of a role to include an entity collection. Since a role

is a set of principals or entities, and this is extended to contain not only entities but

collections of entities or sets of entities this allows a set of sets. To have a consistent
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semantics, Manifold roles are used in the case of roles in RTi by replacing single entities

with a set containing just that one entity. Two new types of credentials are introduced in

RT T

Manifold dot products:

A.R← B1.R1 ¯ ...¯Bk.Rk (5.13)

This syntax means

A.R ⊇ {s1 ∪ ... ∪ sk|si ∈ members (Bi.Ri) , 1 ≤ i ≤ k} (5.14)

Manifold cross products:

A.R← B1.R1 ⊗ ...⊗Bk.Rk (5.15)

This syntax means

A.R ⊇ {s1 ∪ ... ∪ sk| (si ∈ members (Bi.Ri) ∧ si ∩ sj = ∅) , 1 ≤ i 6= j ≤ k}

(5.16)

Consider the following example.

Example 5.2 Company 1 (C1) defines a person to be on a committee if one manager

authorizes it and two different supervisors say so. This can be represented using the

following credentials: If

members (C1.Managers) ⊇ {{Miller} , {Paine}}
members (C1.Supervisors) ⊇ {{OldFather} , {Hamilton} , {Ferguson}}

and
C1.Temp1← C1.Supervisors⊗ C1.Supervisors
C1.Temp2← C1.Managers¯ C1.Temp1
C1.Committee← C1.Temp2.Committee
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Then we have

members (C1.T emp1) ⊇ {{Miller,Hamilton} , {Miller, Ferguson} ,
{Hamilton, Ferguson}}

members (C1.T emp2) ⊇ {{Miller,Hamilton} , {Miller, Ferguson} ,
{Miller,Hamilton, Ferguson} ,
{Miller,Hamilton, Paine} ,
{Miller, Ferguson, Paine} ,
{Hamilton, Ferguson, Paine}}

And if
Miller.Committee ←Miller
Miller.Committee ← Hamilton

Hamilton.Committee ← Hamilton
Hamilton.Committee ← Ferguson
Hamilton.Committee ← Paine
Ferguson.Committee ← Ferguson
Ferguson.Committee ← Paine

Paine.Committee ← Paine

Then one can conclude that

members (C1.Committee) ⊇ {Hamilton, Paine}

but one cannot conclude

members (C1.Committee) ⊇ {Miller}

or

members (C1.Committee) ⊇ {Ferguson}

5.1.1 RTD Role Activations

Role activations allow authorization delegation from user-to-session and process-to-

process. There must be an original principal-to-session delegation. These delegations
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are different in that an authorization is being delegated for the lifetime of the session

or process and the rights of a role are being passed to a session or process instead of

a principal being put in a role. This is like a power of attorney contract for a limited

amount of time or for performing a specific duty.

Delegation Credential: This rule means that B2 is acting forD as A.R if B1 is acting

for D as A.R.

B1
D asA.R−−−−−→ B2 (5.17)

The process of acting for ends (or starts) with

D D asA.R−−−−−→ B1 (5.18)

where we have B1 is acting forD as A.R if D is in the role A.R.

Another form is when you delegate every activation in which you are acting for D

B1
D as all−−−−→ B2 (5.19)

This rule means that ifB1 is acting forD it is activating those roles, thus B2 is also acting

for D in any role.

The last form activates all.

B1
all−→ B2 (5.20)

This means that B1 is activating every delegation. So if B1 is acting, so is B2.

Besides delegating role activations, RTD also has a syntax for requesting a role

activation.

B activation−−−−−−−→ req (5.21)

where activation is any one of the activations above and req is a dummy variable having

a RequestID.
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5.2 Translations

The Trust Management language allows other types besides integers and uses these types

only in safe ways.

• Integers

• Closed enumeration types where the members are statically declared.

• Open enumeration types where the members are not statically declared.

• Floats which are really arbitrary precision rational numbers.

Because Constraint Datalog over addition constraints is a complete language it is

enough to translate the delegations above into Constraint Datalog. It is possible to

translate everything into integers and write every delegation and activation in terms of

integers. In fact every translation is straight forward with the exception of manifold roles.

To handle manifold roles we define the principal being assigned in the translations

below to be a setid, and an additional relation set (setid, principal) which maps

setid’s to the principals or other values contained in the set. Thus we translate relations

containing sets to nested relations. This translation works well for all but the role product

operators as we will see.

5.2.1 Simple member

From : A.r (h1, ..., hn)← D
To : r (A,D, x1, ..., xk) : − ψ
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5.2.2 Simple containment

From : A.r (h1, ..., hn)← B.r1 (s1, ..., sm)
To : r (A, y, x1, ..., xk) : − r1 (B, y, x1,1, ..., x1,k1) , ψ

5.2.3 Linking containment

From : A.r (h1, ..., hn)← A.r1 (s1,1, ..., s1,m1) .r2 (s2,1, ..., s2,m2)
To : r (A, y, x1, ..., xk) : − r1 (A, z, x1,1, ..., x1,k1) , set(z, z

0), r2 (z0, y, x2,1, ..., x2,k2) , ψ

5.2.4 Intersection containment

From : A.r (h1, ..., hn)← A1.r1 (s1,1, ..., s1,m1) ∩ ... ∩Al.rl (sl,1, ..., sl,ml
)

To : r (A, y, x1, ..., xk) : − r1 (A1, y, x1,1, ..., x1,k1) , ..., rl (Al, y, xl,1, ..., xl,kl) , ψ

5.2.5 Simple delegation

From : A.r (h1, ..., hn)⇐ B : C.r2 (s1, ..., sm)
To : r (A, y, x1, ..., xk) : − r1 (B, y, x1,1, ..., x1,k1) , r2 (C, y, x2,1, ..., x2,k2) , ψ

5.2.6 Linking delegation

From : A.r ⇐ A.r1 : C.r2
To : r (A, y, x1, ..., xk) : − r1 (B, y, x1,1, ..., x1,k1) , r2 (C, y, x2,1, ..., x2,k2) , ψ
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Example 5.3 Consider the scenario in Figure 5.1. SciOrg gets funding from NSF

so it allows NSF to have simple delegation of the SciOrgDB role to NSF. NSF allows

research from UNL to access data if they are also a member of the NSF_Fellow role.

Nebraska Department of Agriculture researchers also do research at UNL and are

members of the researcher role.

National Science
Foundation (NSF)
Type: Principal

UNL
Type: Principal

SciOrg
Type: Principal

NE Department of
Agriculture (NDA)
Type: Principal

Role: EmployeeRole: Researcher

Role: ResearcherRole: DBUser

SciOrg.SciOrgDB   NSF

UNL.Researcher  NDA.Employee (intersect) NDA.Researcher

NSF.SciOrgDB  NSF.Researcher
NFS.SciOrgDB   NSF.DBAdmin.SciDataAdmin

Role: DBAdmin

NSF.Researcher    UNL.Researcher : UNL.NSF_Fellow

SciOrg.DBUser  Manager

Figure 5.1: Role-based Trust Management Example

The statements in Figure 5.1 can be extended to include parameters as shown in

Figure 5.2.

We categorize these rules in Figure 5.2 respectively as Simple Member, Simple

Containment, Linking Containment, Intersection Containment, Simple Delegation and
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SciOrg.DBUser  Managerhost  descendant“sciorg.org”

NSF. SciOrgDB  NFS.Researcher

NSF. SciOrgDB  NSF.DBAdmin. SciDataAdmintime  1700.. 2400

UNL.Researcher  NDA.Employee  NDA.Researcher

SciOrg.DBUser  NSF

NSF.Researcher  UNL.Reasearcher : UNL.NSF_Fellowlevel  “Ph.D”

Figure 5.2: SciOrg RTC
1 rules

Linking Delegation. Using the rules above we translate these RTC
1 rules to Constraint

Datalog in Figure 5.3.

DBUserC,D,host :  C  SciOrg, D  Manager,

host  sciorg. org.

SciOrgDBC,D,time :  C  “SciOrg”,E  “NSF”,SciOrgDBE,D.

SciOrgDBC,D,time :  C  “NFS”,E  “NFS”,ResearcherE,D.

SciOrgDBC,D,time :  C  “NSF”,E  “NSF”,DBAdminE,F,

SciDataAdminF,D,time  1700, time  2400.

ResearcherC,D,level :  C  “NSF”,E  “UNL”,ResearcherE,D,

NSF_FellowE,D,level  “Ph.D”.

ResearcherC,D,level :  C  “UNL”,E  “NDA”,EmployeeE,D,

ResearcherE,D.

Figure 5.3: SciOrg Constraint Datalog Rules

5.2.1 O-set delegation

These translations are the same as the translations of the delegations above, except that

the roles become o-sets.
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5.2.2 Manifold roles

RT T modifies the notion of elements of a role from being principals to sets of principals.

We introduce a predicate set (id, value) that uniquely identifies the values in any set.

This does not change the representation of delegation in Datalog for any of the above

rules. However, it is necessary for us to define the role product operators ¯ and ⊗.

From : A.R← B1.R1 ¯ ...¯Bk.Rk

To: isMember(z,R,A) : − role(A,R),
isMember(z1, R1, B1), role(B1, R1),
...
isMember(zk, Rk, Bk), role(B1, R1),
setk (z, z1, ..., zk)

Where setk is a new predicate symbol defined as follows.

Definition 5.4 [14] setk takes k + 1 entity collections as arguments and

setk (s, s1, ..., sk) is true if and only if s = s1 ∪ ... ∪ sk. When si is an entity it is treated

as a single-element set

From : A.R← B1.R1 ⊗ ...⊗Bk.Rk

To: isMember(z,R,A) role(A,R),
isMember(z1, R1, B1), role(B1, R1)
...
isMember(zk, Rk, Bk), role(Bk, Rk)
nisetk (z, z1, ..., zk)

Where nisetk is a new predicate symbol defined as follows.

Definition 5.5 [14] nisetk takes k + 1 entity collections as arguments and

nisetk (s, s1, ..., sk) is true if and only if s = s1 ∪ ... ∪ sk and for any 1 ≤ i, j ≤ k and

i 6= j, si ∩ sj = ∅. When si is an entity it is treated as a single-element set

We could easily allow enumeration types and define these predicate symbols. It is
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R1(A,s) :- A=1, s=2. uniqueID(x,y,z) :- x=2,y=3,z=1.
R1(A,s) :- A=1, s=5. uniqueID(x,y,z) :- x=2,y=4,z=2.
R2(A,s) :- A=1, s=2. uniqueID(x,y,z) :- x=2,y=5,z=3.
R2(A,s) :- A=1, s=3. uniqueID(x,y,z) :- x=3,y=4,z=4.
R2(A,s) :- A=1, s=4. uniqueID(x,y,z) :- x=3,y=5,z=5.
R(id,A,s) :- R1(A,s), id=1. uniqueID(x,y,z) :- x=4,y=5,z=6.
R(id,A,s) :- R2(A,s), id=2. uniqueID(x,y,z) :- x=3,y=2,z=1.
set(i,v) :- i=2, v=2. uniqueID(x,y,z) :- x=4,y=2,z=2.
set(i,v) :- i=3, v=3. uniqueID(x,y,z) :- x=5,y=2,z=3.
set(i,v) :- i=4, v=4. uniqueID(x,y,z) :- x=4,y=3,z=4.
set(i,v) :- i=5, v=5. uniqueID(x,y,z) :- x=5,y=3,z=5.
UnionListA(x) :- x=1. uniqueID(x,y,z) :- x=5,y=4,z=6.
UnionListA(x) :- x=2. uniqueID(x,y,z) :- x=2,y=2,z=7.

setA(id,e) :- UnionListA(x), UnionListA(y), x-y<0, R(x,A,s1), R(y,A,s2),
set(s1,e), uniqueID(s1,s2,id).

setA(id,e) :- UnionListA(x), UnionListA(y), y-x>0, R(x,A,s1), R(y,A,s2),
set(s2,e), uniqueID(s2,s1,id).

Table 5.1: Role Dot Product

possible to define the product operators using only integer constraints. Consider the

following example for the ¯ product.

Example 5.6 Consider R1 and R2 to be manifold roles containing singleton set

elements as follows:

R1 = {{2} , {5}}
R2 = {{2} , {3} , {4}}

Notice that the set names coincide with the element, but that does not need to be the case.

The Constraint Datalog program in Table 5.1 calculates R1¯R2. The Unique ID’s are

required because we are creating new set elements to include in a role. The output shown

in Table 5.2 gives the results of the program.

This program requires 2n tuples for unique identifiers. It also requires 2k−1 different

rules like the last two rules in Table 5.1, because we must account for the different
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setA(id, e) :- id = 1, e = 2.
setA(id, e) :- id = 1, e = 3.
setA(id, e) :- id = 2, e = 2.
setA(id, e) :- id = 2, e = 4.
setA(id, e) :- id = 3, e = 5.
setA(id, e) :- id = 3, e = 2.
setA(id, e) :- id = 5, e = 5.
setA(id, e) :- id = 5, e = 3.
setA(id, e) :- id = 6, e = 5.
setA(id, e) :- id = 6, e = 4.
setA(id, e) :- id = 7, e = 2.

Table 5.2: Role Dot Product Results

orderings possible. It may be possible to lower this last restriction with some kind of

ordering.

5.2.1 Role Activations

This is a single activation by B1 that says B2 is acting for D as A.R where R is a

specified role.

From: B1
D asA.R−−−−−→ B2

To: forRole (B2, D,A,R) : − forRole (B1,D,R) , role (A,R) .

This role encompassing activation by B1 says that B2 is acting for D in any role that

B1 is acting for where r is a role variable.

From: B1
all asA.R−−−−−−→ B2

To: forRole (B2, D,A, r) : − forRole (B1, D, r) , role (A, r) .

This all encompassing activation by B1 says that if B1 is acting for any entity in any

role, B2 also is activated for these roles. Here a and r are both variables.

From: B1
all−→ B2

To: forRole (B2, D, a, r) : − forRole (B1, a, r) , role (a, r) .

A request for an activation is similar.

From: B1
D as all−−−−→ req

To: forRole (ReqID,D, a, r) : − forRole (B1, D, a, r) , role (a, r) .
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Statement Type RT Language Constraint Datalog Explanation
simple member 2 + n 3 + k n ≈ k
simple containment 2 + n+m 3 + k1+k2 n+m ≈ k1+k2
linking containment 3 + n+m1+m2 7 + k + k1+k2 n+m1+m2

≈ k + k1+k2
intersection l + 1+

Pl
1 sl,ml

2 (l + 1)+
Pl

1 xl,kl
Pl
1 sl,ml

≈Pl
1 xl,kl

containment
simple delegation 3 + n+m1+m2 7 + k + k1+k2 n+m1+m2

≈ k + k1+k2
linking delegation 3 + n+m1+m2 7 + k + k1+k2 n+m1+m2

≈ k + k1+k2
o-set delegation same as above same as above same as above
manifold roles 4 (k + 1)

P
i |ni|+4 (k + 1) ni is the number of

enumeration elements
activations k k + 1 nearly identical

Table 5.3: Number of Variables Required

The notation for role activations differentiates it from delegations. There is no

difference in the Datalog rules that they are translated to, except the relation name

forRole and the dynamic nature of activations.

5.3 Comparing the Complexity

Here we are comparing the complexity of the RT family of languages with the rules

as they are translated into Constraint Datalog. In analyzing this we use two different

metrics to compare the language to the semantics. The first metric compares the number

of variables required in Constraint Datalog to the number of variables in RT. The second

metric compares the number of rules required in Constraint Datalog to the number

of rules in RT. Another way to describe this is to say that we compare the size of the

program needed to execute the statements using the logic rules found in [14] with the

different types available and using Constraint Datalog over integer addition constraints

without additional types.
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In Table 5.3 all the statements have similar numbers of variables except the manifold

roles. This occurs because in the role product operators ¯ and ⊗, we have to manipulate

the actual elements in the set instead of just the set IDs. Since we do not have

enumeration (set) elements, the number of variables in this case is much greater for

Constraint Datalog. Since the rules are designed with logic in mind, it is not surprising

that there is little difference between the number of variables in the rule and the number

of variables needed to implement the rule in Constraint Datalog.

When comparing the number of Constraint Datalog rules needed for each RT rule, we

again see a 1-to-1 correspondence except in manifold role product operations. Because

we are implementing sets of sets using Datalog with addition constraints only, we have to

build the operators without using set notation. Although the program in Table 5.1 runs, it

clearly could be written in one rule if MLPQ [19] had enumeration types.

We conclude that the policies in RT have a coinciding number of variables and rules

except for separation-of-duty policies.
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Chapter 6: Expressiveness using Addition

Constraints in Security

It does not take much imagination to find several security situations that may use addition

constraints or some type of Diophantine equation constraint to authorize some request.

In general, if we have one or more rating organizations that assign an integer level of

confidence to an individual, then it may be useful for a different organization to calculate

an acceptable confidence level based on other organizations’ rating. It may be especially

useful if the rating system in use is scaled differently than the rating system of a reference

organization.

As another example, we note that Trust Management can extend beyond security to

include trust as it relates to E-mail from individuals. We might also extend it to gathering

and analyzing different ratings form E-mail servers.

Consider the example of a threshold policy. Suppose an FBI employee also has an

NSA clearance. The CIA may wish to provide individuals with both FBI and NSA

clearances a level of security based on the following credential

CIA (id, ll) : − FBI (id, l1) , NSA (id, l2) ,
ll ≤ 2l1+l2

3
< lu, lu − ll = 1,

V isitLevel (ll, lu) , ll < 7.

Clearly we can write the first constraint as

3ll ≤ 2l1 + l2 < 3lu
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which is expressed as an addition constraint in Constraint Datalog. Using the difference

and multiplication rules from Table 4.1, we get the following valid rule:
CIA (ID, ll) : − FBI (id, l1) , NSA (id, l2) ,

3ll − 2l1 + l2 ≤ 0,
2l1 + l2 − 3lu < 0,
lu − ll = 1,
V isitLevel (ll, lu) .

Threshold policies are one of the types of policies that other Trust Management

languages have difficulty expressing. The concept of using an approximately complete,

safe language is very important in that respect. Now it is possible to express any type of

policy including all types of threshold polices if we base a Trust Management language

on Datalog with addition constraints and approximation.
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Chapter 7: Conclusions

We reviewed the concepts of Trust Management, gave a brief overview of several Trust

Management systems and described the environment and its requirements. We proposed

a Turing-complete language as a solution to the problem of continually adding features

to existing languages. The halting problem associated with complete languages prevents

this possibility unless a we can overcome it. Approximation in Constraint Datalog over

addition constraints solves this problem. The theory was given and a detailed fractal

example demonstrated the approximation theory. We then showed that Diophantine

equations are expressively equivalent to Turing Machines and cited Matiyasevich’s

work in proving this. Based on approximation and Diophantine equations being

Turing-complete, we proposed that Constraint Datalog over addition constraints be used

as an approximately complete, safe language. This was shown by demonstrating that

any Diophantine equation can be expressed by using Constraint Datalog over addition

constraints. We gave a detailed look at translating the Role-based Trust Management

family of languages into Constraint Datalog and showed that the rules in RT have similar

complexity to the rules in Constraint Datalog. Finally, additional reasons for using

Constraint Datalog with addition constraints was given along with an example of a

threshold policy.

Finally, we mention some directions for future work. First, adding the ability to

update a tuple inside the body of a rule would simplify many operations, but would need

a theoretical basis in safety. Second, different kinds of policy constructs, such as mutual

exclusion of roles, need to have semantics defined in Constraint Datalog.
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