1 Linear and Semilinear Set Definitions:

Definition 1 Let \mathbb{N} be the set of nonnegative integers and k be a positive integer. A set $S \subseteq \mathbb{N}^{k}$ is a linear set if $\exists v_{0}, v_{1}, \ldots, v_{t}$ in \mathbb{N}^{k} such that

$$
S=\left\{v \mid v=v_{0}+a_{1} v_{1}+\ldots+a_{t} v_{t}, a_{i} \in \mathbb{N}\right\}
$$

The vector v_{0} (referred to as the constant vector) and $v_{1}, v_{2}, \ldots, v_{t}$ (referred to as the periods) are called the generators of the linear set S.

Definition $2 A$ set $S \subseteq \mathbb{N}^{k}$ is semilinear if it is a finite union of linear sets. \emptyset is a trivial semilinear set where the set of generators is empty. Every finite subset of \mathbb{N}^{k} is semilinear - it is a finite union of linear sets whose generators are constant vectors. Clearly, semilinear sets are closed under union and projection. It is also know that semilinear sets are closed under intersection and complementation.

