Differences between revisions 3 and 4
Revision 3 as of 2010-04-18 16:51:21
Size: 361
Editor: 24-183-238-75
Comment:
Revision 4 as of 2020-01-26 22:54:17
Size: 314
Editor: scot
Comment:
Deletions are marked like this. Additions are marked like this.
Line 3: Line 3:
{{{#!latex
A relation $\le$ is a partial order on a set $S$ if it has:
\begin{enumerate}
\item Reflexivity: $a \le a$ for all $a \in S$.
\item Antisymmetry: $a \le b$ and $ b \le a \Rightarrow a=b$.
\item Transitivity: $a \le b$ and $b \le c \Rightarrow a \le c$.
\end{enumerate}
}}}
A relation is a partial order on a set if it has:
 * Reflexivity: for all .
 * Antisymmetry: and .
 * Transitivity: and .

Definition: Partial Order (see PoSet for partially ordered set).

A relation is a partial order on a set if it has:

  • Reflexivity: for all .
  • Antisymmetry: and .
  • Transitivity: and .

PartialOrder (last edited 2020-01-26 22:54:17 by scot)