
DESIGN AND IMPLEMENTATION OF MULTI-HEAD PRESENTATION

SOFTWARE FOR THE iOS PLATFORM

by

Michael S. Babienco

A PROJECT DEFENSE

Presented to the Faculty of

The School of Computing at Southern Adventist University

In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professor Hall

Collegedale, Tennessee

February, 2015

DESIGN AND IMPLEMENTATION OF MULTI-HEAD PRESENTATION

SOFTWARE FOR THE iOS PLATFORM

Michael S. Babienco

Southern Adventist University, 2015

Adviser: Tyson Hall, Ph.D.

ShareSynch, currently available for both Windows and Mac OS X, is a presen-

tation software application tailored towards evangelistic speakers with limited

experience. The software has several essential features including the use of speaker

notes during a presentation, support for independent slide and speaker note lan-

guage, speaker note pagination with dynamic font scaling, editing of presentations

and rich text speaker notes from within the application, and dynamic appeal video

configuration. No known iOS application contains all of the PC software’s essential

features. In this paper, we discuss the design and implementation of ShareSynch

on the iOS platform. The iOS version of ShareSynch, developed in conjunction

with ShareHim, mirrors functionality currently available in the PC software and

also adds new features such as dynamically generated PDF documents, down-

loadable sermon series, and a new file format that provides for reduced storage

consumption. ShareSynch was published in the iOS App Store on March 2, 2015.

vii

DEDICATION

For all those who imagined that I had an actual office in the computing

department

ix

Contents

Contents ix

List of Figures xiii

List of Tables xv

1 Introduction 1

2 Background 5

2.1 Quality Assurance . 5

2.2 Design Patterns . 7

2.3 Mobile Platforms . 8

2.4 User Expectations . 9

2.5 Current Mobile Presentation Applications 10

2.5.1 Full-Featured Applications . 10

2.5.2 Template-based Applications 12

2.5.3 Other Presentation Applications 12

3 ShareSynch iOS Development and Implementation 15

3.1 Application Summary . 16

3.2 Development Approach . 18

x

3.3 Task Delineation . 20

3.3.1 Presentation Mode . 24

3.3.2 File and Database Implementation 24

3.3.3 Sermon Editing System & Settings 24

3.3.4 Sermon Slideshow Installation 25

3.3.5 UI Design and Implementation 25

3.3.6 Beta and User Testing . 26

3.3.7 Final Changes, Bug Fixes, Testing, and Documentation 26

3.4 Final Deliverables . 26

4 Testing & Evaluation Plan 29

5 Testing and Evaluation Results 33

6 Conclusion 39

A Requirements Specification 41

A.1 Task Delineation . 41

A.2 Hardware Requirements . 42

A.3 Application Requirements . 42

A.3.1 General . 42

A.3.2 Download & Installation . 44

A.3.3 Opening and Managing a Sermon Series 46

A.3.4 Presentation Mode . 48

A.3.5 Edit Mode . 51

A.3.6 Settings . 53

A.4 Change Orders . 54

xi

B Application Screenshots 57

Bibliography 63

xiii

List of Figures

3.1 The database schema for the ShareSynch iOS application allows for the storage

of all sermon series information and user data. 22

B.1 ShareSynch’s main menu screen lets users directly access available sermon

series and settings without having to open another page. The sections for

available sermon series and settings can be expanded or contracted as necessary. 58

B.2 The select presentation screen shows which variation is currently loaded and

which sermons are currently available. The user can also change the slide

language, change the speaker note language, or generate a PDF of a selected

sermon from this screen. The currently selected sermon cell is highlighted in

light blue, and its title text is set to a bold font. 59

B.3 Presentation mode prominently displays speaker notes for the user. Arrows

indicate that advancing the speaker notes will move the presentation to the

next slide. When a sermon has an appeal, appeal options are shown in the

toolbar along with the change font and presentation mode settings. 60

xiv

B.4 ShareSynch lets users edit a sermon presentation in a variety of ways. Notes

are editable in rich text. Slides can be inserted from the user’s device or from

another sermon within the same series. The user can make a variety of other

changes to the presentation from this screen, such as changing sermon order

or slide visibility. 61

B.5 ShareSynch lets users preview dynamically generated PDF documents before

sharing them with others. The user’s customized speaker notes and sermon

order are reflected in these documents. The page-breaking algorithm attempts

to minimize the amount of whitespace at the end of each page by placing as

much of a slide’s speaker notes on the current page as possible before inserting

the rest of the notes on subsequent pages. 62

xv

List of Tables

3.1 Libraries and Open-Source Projects Used in ShareSynch iOS 21

3.2 Task Delineation for the Development of the ShareSynch iOS Application . . . 23

4.1 ShareSynch Performance Testing . 31

5.1 ShareSynch Performance Testing Results . 34

5.2 ShareSynch Battery Test Results . 36

1

Chapter 1

Introduction

ShareHim’s ShareSynch presentation software has been designed to help speakers

learn to easily practice and participate in evangelism, both locally and internation-

ally [1]. The software has many advantages and unique features when compared to

similar presentation software; however, speakers of ShareSynch sermons can only

use ShareSynch on a Windows or Mac OS X computer and cannot present from

any other operating system or device due to ShareSynch’s proprietary sermon file

format. The call for a mobile version of the software has grown in recent years due

to the increased popularity and convenience of presenting sermons from mobile

devices such as tablets or phones. Creation of a mobile version of the ShareSynch

software gives speakers the ability to use ShareSynch sermon materials and take

advantage of all of ShareSynch’s unique features while presenting from a mobile

device.

ShareSynch includes several unique features that help novice speakers actively

participate in the evangelism process. A set of sermon presentations make up

a sermon series, and each series contains several different languages for both

sermon slides and speaker notes. The language used for speaker notes does not

2

need to match the language used for sermon slides, and the languages used for a

presentation can be easily changed from within the application. Speakers can adjust

the font size of speaker notes during a presentation, and notes are dynamically

paginated based on this font size. When a speaker advances the presentation, the

next slide is not shown if there are more pages of notes to show for the current

slide. Instead, when there is another page of notes to show, the speaker notes

are scrolled smoothly downward to the next page of notes. Videos shown for the

sermon appeal can change automatically dependent upon the speaker’s choice

for the appeal type and song without the need for the speaker to edit the overall

sermon.

Android and iOS are the two largest mobile application markets. Although

Android has a bigger market share when compared to iOS, many Android devices

do not support external displays at all, and more than 30% of currently active

Android devices cannot utilize the external display APIs [2, 3, 4, 5]. All iOS

products since the release of the iPhone 4 support external displays, and at least

95% of iOS devices can use the external display APIs [6, 7, 8]. We discuss the

development of an iOS version of ShareSynch that mirrors functionality currently

available in the PC version of ShareSynch. The iOS version also extends the

software’s capabilities by allowing for the download and installation of new

sermon series via the internet, creating dynamically generated PDF documents of

user-edited sermons, and incorporating a new file format and storage mechanism

that has the potential to greatly reduce consumed storage space for a sermon series.

The iOS version of ShareSynch was developed in conjunction with the Center for Innovation
and Research in Computing (CIRC) at Southern Adventist University.

3

The rest of this paper discusses background material in Chapter 2, discusses

the development and implementation for the project in Chapter 3, and describes

test methodologies for the application in Chapter 4. Chapter 5 gives the results of

application testing, and Chapter 6 presents a summary of project accomplishments

and deliverables. Appendix A gives the application requirements, and Appendix B

shows some screenshots of the finished product.

5

Chapter 2

Background

Emerging research in mobile development is quite disparate, including mobile ap-

plication quality assurance, design patterns, the choice of application deployment

type and platform, and user expectations. In this chapter, we discuss research

pertinent to the development of the iOS version of ShareSynch and perform a com-

petitive analysis of the available features in currently available mobile presentation

applications.

2.1 Quality Assurance

Mobile application markets are driven by customer reviews, and any faults within

an application can drive users away from utilizing the application [9]. In order to

achieve a high level of quality, applications should be thoroughly tested, which can

be difficult to achieve because mobile applications have unique types of challenges

when compared to traditional software programs. Several challenging areas include

the invoking of remote services, creating one application on a wide variety of

hardware devices, power consumption, and unique security concerns [10]. Muccini

6

et al. [11] discuss challenges in the realm of mobile application testing, which

include mobile connectivity, limited resources, and differing versions of operating

systems. Testing all areas of an application can take a considerable amount of time,

so automating as many tests as possible is essential to reducing the amount of

time testing the application. One particularly difficult testing area is graphical user

interface (GUI) testing, because tests must check to see if all device types show the

application in a clean and user-friendly way in all available device orientations. An

application’s GUI must adhere to user interface (UI) guidelines and may include

universal user interfaces, which increases the difficulty of GUI testing [12].

GUI testing is defined by Nguyen et al. [13] as “the process of testing a software

application through its GUI,” and it is a form of system-level testing for a GUI

application. Unfortunately, the number of GUI test cases is extremely large, and

it grows quickly whenever any user functionality is added to the application.

Usually, GUI testing takes two forms. The first uses a scripting language to create

a type of unit tests that can perform manipulations on GUI items as well as invoke

user events. These tests are manually coded, and testers can assert GUI item

properties in the same manner as normal unit test assertions. The second type of

GUI testing involves capturing user events and then replaying these events at a

later time to see if they still function as required for the application. Many GUI

testing frameworks exist to help developers create and execute GUI tests on the iOS

platform, including GUITAR [13], Calabash [14], Kif [15], Xamarin Test Cloud [16],

UIAutomation [17], and UI AutoMonkey [18]. None of these frameworks, however,

allow a developer to create GUI tests using both Objective-C code and official,

documented Apple APIs. Only Kif allows a developer to create tests in Objective-C,

but it uses undocumented APIs and relies on the accessibility properties of GUI

7

elements rather than pointers to GUI objects, which can make test creation difficult

and time consuming.

2.2 Design Patterns

Biel and Gruhn [19] propose two new design patterns for mobile development:

the Client-side Multi-Screen Support (CMSS) pattern and the Mobile Application

Usability Test Suite (MAUTS) pattern. The CMSS pattern helps developers support

a wide variety of hardware screen sizes and resolutions, and the MAUTS pattern

suggests that developers utilize users and their data in automated and manual tests

during all stages of application development in order to reduce application crashes.

Although the patterns were designed for use on Android devices, the CMSS

pattern is still applicable to iOS and the ShareSynch project due to the multitude

of screen resolutions and sizes for iOS [20]. In the mobile market, users have a

variety of device types, each with their own screen size and resolution. Developers

must create a UI that allows users to perform all functions in a given application,

remains easy to utilize by all types of users, and adheres to UI guidelines. They

must also make decisions regarding how UI differences will be handled between

different platforms or devices [12]. Devices can be categorized into three different

pixel density classes: high, medium, or low density classes. An application needs

to function properly and look attractive on each class of device as well as on every

device within each class. The Client-side Multi-Screen Support pattern [19] advises

developers to design their UI for a specific screen size and resolution in each class,

then use a minimal amount of runtime code to scale this general UI to a UI that

functions properly and looks acceptable on each type of device within that class.

This technique improves user experience across many devices, but can increase

8

media design efforts and programming effort when compared to designing for a

single screen size and resolution.

2.3 Mobile Platforms

Developers of mobile applications often must decide between building a fully-

native application for each mobile operating system, building a mobile web appli-

cation that can run on multiple platforms, or using a third-party abstraction tool to

transform a single set of code into native code for each device [10]. Although cross

platform tools seem promising, a market analysis performed by Smith’s Point

Analytics [21] states that limitations in these tools, specifically in the realms of

performance and device-specific functionality, are causing developers to struggle

and reducing efficiency gains normally obtained by using cross platform tools. The

market analysis also suggests that although the market for cross platform tools is

growing, the rate at which the market is growing is rapidly decreasing. When a

single code base is used for a large variety of devices, irregularities often exist due

to device-specific conditions [22].

Charland and Leroux [23] investigated whether native applications can really be

replaced by web applications. The main benefit of web applications is their ability

to run across different platforms, thus saving development costs and reducing

development time. Although web application capabilities are increasing, they are

still slower than native applications, and it can be difficult to replicate the native

user interface in a web application. A user expects a speedy application that has an

interface design similar to other native applications, and a web application cannot

always meet those needs.

9

2.4 User Expectations

Customer expectations for mobile applications are reviewed by Haller [24] in an

examination of more than 1,000 application reviews in three app stores. Complaints

fell into four different categories: functional problems, such as bugs or crashes;

technical issues, such as performance and battery consumption; GUI interaction

problems, including poor design or missing languages; and business decision

complaints or suggestions. Improvement ideas, bugs, and crashes ranked among

the top five reasons for poor application reviews. Haller believed that testing

procedures were not carried out by many projects, as shown by the multitude

of crashes and bugs. Khalid et al. [25] also investigated the reasons for user

complaints regarding mobile applications in a study of 6,390 one and two-star

reviews. Khalid et al. found that functional errors, feature requests, and application

crashes are the reason for more than 50% of complaints, thus supporting the work

by Haller [24].

The work on privacy expectations by Jung et al. [26] showed that users do not

want mobile applications to gather and share unnecessary or private information.

Jung et al. enlisted twenty Android smartphone users and monitored the data that

their smartphone applications collected and transferred for three weeks. Partici-

pants were interviewed after the three week period to learn about their privacy

expectations and reactions to the actual data collected and transferred. Several

users expressed surprise at the amount of data that several apps collected, and over

50% of users were concerned by applications that shared location information with

third parties. Users expected applications to collect data in a way that coincided

with the way the application was used.

10

2.5 Current Mobile Presentation Applications

A large number of presentation applications are currently available in the iOS

App Store. Each of these applications have different features and capabilities. We

performed a search on the keyword “presentation” in the iPad iOS App Store

on August 7, 2014 and January 26, 2015 and located the top five presentation

applications by popularity and by relevance as determined by the App Store.

Three applications, Google Slides [27], Keynote [28], and Prezi [29] were listed

in both groups. This section organizes most of these applications according to

their features; the section first reviews full-featured applications, then discusses

template-based applications, and ends with an examination of the remaining pre-

sentation applications. CloudOn [30], which appeared in App Store results during

the August 7 search, is not discussed in this section because it was purchased

by Dropbox [31] on January 19, 2015, and it will be shutting down on March 15,

2015 [32].

2.5.1 Full-Featured Applications

Keynote [28], created by Apple Inc., is available for free for new iOS owners who

have activated their device after August 2013 [33]. Keynote lets users create, edit,

and give presentations via an external device or screen. All device orientations

are supported in presentation mode via several different layout options, and the

application lets the user create duplicates of presentations. Unfortunately, presenter

notes are only available in presentation mode when the iOS device is connected

to an external display; when the device is not connected to an external display,

only the presentation’s slides are shown on the speaker’s device in presentation

11

mode. Furthermore, a speaker cannot view speaker notes, the current slide, and a

preview of the upcoming slide all at one time while in presentation mode.

Microsoft PowerPoint for iPad [34] brings the popular PC program to iPad

devices. The application is free to download, but in order to view speaker notes

during a presentation as well as have full editing capabilities, the user must

have an Office 365 subscription, which requires a monthly or yearly payment.

Presentations can be created, imported, and presented without an Office 365

subscription; speaker notes can be created and edited in rich text, even though

they are not seen while presenting in the free version of the software. When an

Office 365 subscription is active, the application has many of the same capabilities

as the desktop version of PowerPoint.

Google Slides [27] offers many of the same capabilities as Microsoft PowerPoint

for iPad. Although the user must have a Google account to use the application,

once the user logs in to their Google account, they can create, edit, and present

Google Slides or PowerPoint documents. Speaker notes are editable in rich text, but

they are not viewable while giving presentations. The application offers real-time,

online editing capabilities with multiple users working on the same document,

and it offers Google Drive functionality for loading and saving documents.

WPS Office [35] is a completely-free application that allows users to create

and edit Microsoft Word, Excel, and PowerPoint documents. Pictures, music, and

video can be inserted into the presentation from the user’s device. A small number

of rich text capabilities are available when editing slides, but speaker notes can

only be written in plain text. Presentation mode shows the current presentation

progress, a presentation timer, the current slide as well as previews of other slides,

and optionally shows speaker notes and slide preview thumbnails.

12

2.5.2 Template-based Applications

FlowVella [36], previously known as Flowboard, utilizes templates for quick

presentation creation. Individual slides are made from a pre-defined or blank

layout, and users can easily insert text, pictures, or videos into the slide layouts.

Each slide element can link to another presentation slide, allowing users to easily

create presentations that quickly jump between slides. Users can pay for extra

features, such as the ability to export slides to a PDF document. FlowVella does

not offer speaker note functionality.

Haiku Deck [37] and Prezi [29] offer more templates for users to quickly create

appealing presentations. Speaker notes are visible in Haiku Deck while in vertical

device orientations, and the application lets speakers use iPhones as presentation

remotes. Haiku Deck also helps you easily share your presentations with others

through a multitude of sharing options. Prezi creates presentations that consist of

one giant slide. As a presentation continues, Prezi zooms in and out of the slide

in order to give the appearance of having individual slides. Within the provided

templates, the Prezi slides are easily configurable in theme and structure. Like

FlowVella, Prezi has no speaker note capabilities.

2.5.3 Other Presentation Applications

SlideShark [38] lets users store their presentations in the cloud for easy access

across several iOS devices. SlideShark only lets users give presentations; no editing

capabilities are available within the application. When presenting from SlideShark,

animations, fonts, and other media are shown in the same manner as in the desktop

version of PowerPoint. Speakers can add annotations to slides while they are being

presented. Presentation mode can show speaker notes, a thumbnail list of slides,

13

timers, and the current slide on the iPad version of the application; however,

speaker notes can only be seen when presenting from an iPad.

Nearpod [39] is a unique presentation application that is built for the education

market. A speaker creates an interactive presentation filled with items such as

quizzes or polls. Audience members join the presentation via the internet and

their own electronic device and can interact with the presentation when required,

such as by answering poll questions. As audience members submit answers to

poll questions or otherwise interact with the presentation, the speaker views these

results in real-time. Unfortunately, the Nearpod application pushes users to an

external web browser for several important tasks, such as presentation creation,

and it does not offer speaker note functionality.

GoToMeeting [40], by Citrix, lets users schedule, share, and join presentations

over the internet. Users can talk with one another or see each other’s camera

feeds in order to make collaboration more simple. The presenter can share web

pages, presentations, or other document types with other users. Joining other

presentations is free, but giving presentations requires a monetary subscription

after a free thirty-day trial. No speaker notes are available for the user while

presenting, and the user cannot create any type of document in the application.

None of the applications discussed in this section allow for pagination of

speaker notes, changing the speaker note font size while presenting, changing

the presentation or speaker note language independently of one another, or hot-

swapping of certain slides.

15

Chapter 3

ShareSynch iOS Development and

Implementation

ShareSynch is an extensive presentation software system that is currently available

for Windows and Mac OS X systems. The iOS version of ShareSynch took the

core features of the PC software and implemented them on the iOS platform. The

application allows for the presentation of ShareSynch materials on an external

display via an Apple TV or a VGA/HDMI cable. Users can edit sermon slides and

speaker notes from within the application. New features that are not currently

available in the PC software have been implemented for this project, including

the ability to download sermon series from the internet, a new file format, and

dynamic PDF generation of sermon slides and notes. The new file format and its

corresponding database are used to store all sermon series and sermon information,

including pictures, videos, and notes. Over fifteen external libraries were utilized

in the development of the application, and the application contains about 13,000

lines of non-library code. In this chapter, we give a summary of the application

16

and discuss the development approach, task delineation, and final deliverables for

the iOS version of ShareSynch.

3.1 Application Summary

The ShareSynch iOS application has direct support for the iPad Air, iPad Mini, and

iPod Touch 5
th generation devices. Tangential support is provided for the iPhone

5, iPad 2, iPad with Retina Display, and a small number of other iOS devices. Each

iOS device must run iOS 7.1 or 8.x, and the device needs to be compatible with an

adapter that allows for VGA or HDMI output. The application supports external

displays via these adapters or via an AirPlay device, such as an Apple TV.

Upon opening the application for the first time, users have access to a demo

sermon series that contains a single sermon. Users can gain access to more sermon

series by subscribing with ShareHim to sermon series; once subscribed, users

can download new sermon series via resumable downloads over the internet or

install individual sermons via iTunes application management. A user can have

multiple series installed at one time. Before entering presentation mode, users can

adjust the slide and speaker note language or create variations of a sermon series.1

A user can also dynamically generate sermon PDF files, which show the user’s

customized speaker notes and slides.

A speaker can begin presenting a ShareSynch sermon after loading that sermon

in presentation mode. Both images and videos are shown on the external display.

The presentation interface shows a scrolling list of slide preview images, current

presentation progress in terms of the number of visible slides, speaker notes, and

a toolbar that lets a speaker make quick changes to presentation settings. The
1A sermon series variation is a copy of a given sermon series that contains altered versions of

sermon slides or speaker notes.

17

presentation can be advanced via a Bluetooth remote or keyboard or by tapping

in or swiping over the speaker notes. Speakers can quickly jump to any slide in

the presentation by tapping the preview image for that slide. Speaker notes take

up the majority of the presentation mode screen; note font size can be changed

from the toolbar with a simple tap of the increase or decrease font buttons. Notes

for each slide are paginated, and there is a visual indicator on the screen when

the user has reached the last page of speaker notes. When a speaker attempts to

advance the presentation, the application first checks to see whether the last page

of notes are being displayed for the current slide. If the last page is being shown,

the sermon is moved to the next slide. If there are more notes to show, the speaker

notes are smoothly scrolled to the next page, and the next slide is not shown. The

external display smoothly animates from one image or video to the next when

appropriate.

An appeal may be given at the end of a sermon. Three appeal types exist: vocal,

instrument only, or text only. Vocal and instrumental appeals project videos, and a

text-only appeal projects a single image. As the presenter advances the speaker

notes for an appeal, text is displayed on top of the projected video or image in

order to communicate with the congregation. The appeal song selection and type

can be changed from the presentation mode toolbar. When a user changes the

appeal song selection or type, the application automatically swaps the appropriate

slides into and out of the presentation; the user does not need to enter the editing

interface to make changes to the appeal selection and type. Appeal videos are

downloaded and installed via the application’s sermon series download interface.

The user can access the sermon editing capabilities from the presentation

interface for that sermon. Speaker notes can be edited in rich text with the

following options: bold, italic, underline, paragraph indentation, and bulleted lists.

18

Slides can be hidden or rearranged, and new slides can be created from pictures

or videos on the user’s device. Slides can also be duplicated or imported into the

current sermon from other sermons within the same sermon series. Changes to

the sermon are saved automatically, and undo/redo buttons are available for the

user should they need them.

One unique feature of the iOS version of ShareSynch is the ability to dynami-

cally draw text on top of images. The same image can be used for the background

of a large number of slides, and each of these slides can have text drawn on top of

its image. This feature will allow ShareSynch series creators to design one slide

image to be used across a large number of slides and then designate text and

text attributes for that slide separately. Text in a specific language is drawn onto

the image at runtime. Text attributes include position, width, height, font name,

font size, and font color. When this capability is utilized, the application can use

one image for many different slides and languages, which drastically reduces the

sermon storage cost when compared to storing a unique image for every slide in

every language.

Details on all ShareSynch features and requirements appear in the ShareSynch

Requirements Specification located in Appendix A.

3.2 Development Approach

The ShareSynch iOS application was implemented as a native application in

Objective-C in order to take advantage of all available device functionality [21, 22];

the application was built for both the iPod Touch and iPad platforms. We made

substantial use of the Model-View-Controller design pattern [41] when organizing

code, and we also used the Delegation design pattern [42] for communication

19

between different objects. We utilized the recommendations set forth in the iOS

App Programming Guide [43] for general guidelines and principles to use while

developing the application. The application does not give any user information to

third parties; does not gather personal user information outside of a user-supplied

name and email address, which are used for subscription purposes; and only

performs data gathering on the length of time that sermons are presented for

sermon copyright purposes. ShareSynch uses the same web protocols as the

PC software when requesting information from ShareHim servers. The HTTP

protocol is used when uploading usage statistics, verifying a user’s subscription,

and requesting sermon download information. The sermon download information

returned by ShareHim servers defines whether files should be downloaded via

HTTP or HTTPS.

All pictures, videos, and other pertinent non-user data files are stored in

the Application Support directory. This directory is not directly accessible to

users and thus prevents users from easily destroying or obtaining any application

data files. Keeping data files in their own directory also allows us to add the

com.apple.MobileBackup attribute to the Application Support folder, which pre-

vents the backup of large data files through iCloud or iTunes [44]. Pictures, videos,

and other sermon series content are housed in large archive files; archive files

allow for file compression, which helps to save valuable storage space. Archive

files are encrypted, which safeguards copyrighted sermon images and videos

should the user somehow gain access to the Application Support directory. The

SQLite database that houses series and sermon information is also stored in the

application’s Application Support folder. iTunes application management lets the

user copy data files into the application’s Documents directory, which is the appli-

cation’s only publicly accessible directory. Once sermon install files are copied into

20

this directory via iTunes, the application can detect the presence of these files and

move them into the private Application Support directory. Once install files have

been moved to the Application Support directory, they are available for installation

from the application’s sermon installation interface.

The ShareSynch application utilizes an SQLite [45] database, and the database

schema can be seen in Figure 3.1. The database stores much of the application

data, including sermon series information, activation data and their corresponding

expiration dates, speaker notes, and user variations.

We have utilized over fifteen external libraries and other open-source projects

in order to speed up development. Most libraries are licensed under the MIT

license [46], and three libraries are licensed under either the BSD 2-Clause or BSD

3-Clause license [47, 48]. The ShareSynchIO library is proprietary and is not freely

available online. Several of the libraries were tweaked and edited in order to fix

bugs, finish incomplete features, and otherwise improve the libraries for use in

ShareSynch. Table 3.1 lists each of these libraries, their purpose in the application,

and whether or not ShareSynch uses a modified version of these libraries.

3.3 Task Delineation

The ShareSynch project was broken into seven major task areas for development

and testing. A summary of major tasks, including estimated work hours and

date of completion for each task, can be seen in Table 3.2. Most requirements in

the requirements document were assigned a task number corresponding to the

tasks listed in this table, as seen in Appendix A. Between August 25, 2014, and

February 6, 2015, work progressed at the rate of approximately 20 hours per week.

Due to delays in receiving official ShareSynch install files from the client as well

21

Table 3.1: Libraries and Open-Source Projects Used in ShareSynch iOS

Name Purpose in ShareSynch iOS Manually
edited?

AFNetworking [49] Allow for resumable downloads and
download statistics

CTAssetsPickerController [50] Let users import pictures or videos from
their device into the application

DraggableCollectionView [51] Drag and drop UICollectionView cells

DTCoreText [52] Converts HTML text to NSAttributed-
String objects

FileHash [53] Generates an SHA-384 hash for file in-
tegrity checks

iCarousel [54] Slide preview images and carousel for the
present screen

IQKeyboardManager [55] Fixes errors with keyboards and text in-
put on small screens

JNKeychain [56] Easy-to-use API for loading and storing
keys into a device’s keychain

KSLabel [57]
Generates a black border around text so
that it can be easily seen against any back-
ground

MGBoxKit [58] Trims characters from the front and back
ends of an attributed string

MRProgress [59] Displays a graphical progress view dur-
ing potentially long operations

MSCellAccessory [60] Allows UITableViewCells to have a black
disclosure indicator

Objective-Zip [61] Allows for the reading and writing of
encrypted or unencrypted zip files

Reachability [62] Checks to see if the user has an active
internet connection

RichTextEditor [63] Provides the user with tools to edit large
blocks of text in rich text

ShareSynchIO
ShareHim API that reads ShareSynch iOS
install files that have been exported from
the PC version of ShareSynch

22

Figure 3.1: The database schema for the ShareSynch iOS application allows for the storage
of all sermon series information and user data.

as new requirements added during the course of the project, the order of task

implementation was not completed in the proposed order. After the third task was

completed, the rest of the tasks were worked on simultaneously, which caused

some tasks to be finished after their estimated date of completion. This section

23

Table 3.2: Task Delineation for the Development of the ShareSynch iOS Application

Task
Estimated

Work
Hours

Estimated
Date of

Completion

Actual
Work
Hours

Actual Date
of

Completion

Presentation
Mode 100

August 22,
2014

104
August 11,

2014

File and
Database

Implementation
70

September 15,
2014

64
September 4,

2014

Sermon Editing
System &
Settings

160
November 10,

2014
99

October 9,
2014

Sermon
Slideshow
Installation

80
December 08,

2014

313
2

December 29,
2014

UI Design and
Implementation 60

December 29,
2014

December 4,
2014

Beta and User
Testing 60

January 19,
2015

January 30,
2015

Final Changes,
Bug Fixes,

Testing, and
Documentation

40
February 2,

2015

February 2,
2015

Project
Completion 570 February 2,

2015 580 February 2,
2015

2The final four tasks were worked on simultaneously.

details items completed in each task along with the features available for users

when a given task was completed.

24

3.3.1 Presentation Mode

The first task of development was the creation of the speaker’s presentation view.

The application’s presenter view lets the speaker project slides and video onto

an external monitor while viewing notes and slide thumbnails on the iOS device.

This task included initial project and source control setup, displaying and scrolling

speaker notes and slides, overlaying text on an image, and playing an appeal video

with text on top of the video.

3.3.2 File and Database Implementation

The second task included the creation of the application database and the im-

plementation of file formats, file storage, and file manipulation. Sermons, slides,

variations, and all other data were loaded as appropriate from data files and the

database once this task was completed. The user did not see many obvious changes

after this task was completed because most changes occurred in the application

backend. Because the final file and database implementation details were not

finalized before project coding began, this task was placed after presentation mode

implementation.

3.3.3 Sermon Editing System & Settings

The sermon editing system was the most intricate part of developing the ShareSynch

application. Once the application’s editing capabilities were available, the user was

able to edit slide notes in rich text; move slides from one position to another; and

add, hide, or remove slides from a given sermon. The speaker could also undo

or redo their changes to a sermon. Dynamically generated PDF files of the user’s

edited sermons could be generated; these PDFs contain the speaker’s own notes

25

along with their corresponding slides. The PDF files have intelligent pagination,

which attempts to minimize the amount of white space on each page of the PDF.

The settings page for the application was also created during the course of this

task.

3.3.4 Sermon Slideshow Installation

When this task was completed, users were able to download a sermon series from

ShareHim servers or install sermons via iTunes after subscribing to a sermon series.

When downloading a sermon series over the internet, the user cannot utilize any

individual sermon from a series until the whole series has been downloaded and

installed. A demo sermon was created for users who have not yet subscribed to

any sermon series so that they could still become familiar with the application’s

features.

3.3.5 UI Design and Implementation

Because the application was created for both iPod Touch and iPad devices, a

task was specifically devoted to the creation and implementation of graphical

user interfaces that functioned properly on widely varying screen sizes. User

interfaces were designed according to the interface guidelines given by Apple for

iOS applications [64]. Two main interfaces were created: one for the larger iPad

screen size and density and a second for the significantly smaller iPod Touch.

The application manipulates these interfaces at runtime to adjust for differing

screen sizes and densities. Once the UI design and implementation task was

completed, users were able to move through the full ShareSynch application via

an intuitive and clean interface on all directly-supported device types and in all

26

device orientations. Several screenshots of the finished application can be seen in

Appendix B.

3.3.6 Beta and User Testing

The application underwent thorough testing and evaluation. All features were

tested; many optimizations and bug fixes were made. Along with GUI and feature

testing, this testing phase also included device testing, battery-consumption testing,

unit testing, user testing, and acceptance testing.

3.3.7 Final Changes, Bug Fixes, Testing, and Documentation

This final task enveloped the final details and work of the project. Documentation

was created as necessary, any last-minute bugs were fixed, and more testing was

completed. Documentation included comments above every function that was

not part of an external library, file format documentation, and general project

documentation. Over seven thousand lines of comments were written in and above

ShareSynch functions. When this task was completed, the application became

ready for use by the public.

3.4 Final Deliverables

Once the project was completed, we delivered the following materials to ShareHim:

• Application source code

• Administrative access to project source control

• Documentation on the project’s setup and installation as well as its organiza-

tion

27

• File format documentation

• Final project report

29

Chapter 4

Testing & Evaluation Plan

A large variety of test types were executed during the course of ShareSynch’s devel-

opment. Xcode’s XCTest framework, the iOS simulator, and physical devices were

used to perform unit tests, battery usage analysis, and device testing. Other test

types were executed in Instruments, a program included in Xcode for performance

and graphical testing [65].

Unit tests were created within the native Xcode XCTest framework. These black-

box tests focused on data model functionality, and they ensured that application

data was properly loaded, modified, and saved. Along with unit tests for data

model classes, additional unit tests were created for a small number of custom

data structures, such as the structure that controlled undo and redo actions on

the edit page. The XCTest framework was also used to create performance tests.

Performance tests in the XCTest framework measure how long, in seconds, a block

of code takes to execute. The block of code is executed ten times, and data on the

average time taken as well as each individual test time is provided to the tester.

ShareSynch has several areas where the application must perform tasks within a

given time frame so that the application does not feel sluggish to the user. Table 4.1

30

shows these areas and their maximum time for completion on the iPad Air. If

the application could not perform one of these tasks in the given time frame, the

functionality was adjusted so that the user could continue to utilize the application

while lengthy tasks were running. For example, if the entire sermon cannot be

loaded within ten seconds on average, the application should show the available

sermon content after ten seconds and continue to load the rest of the sermon in

the background. Even if a task can be performed in the required time, however, a

user is shown a progress meter of some type so that they know the application is

not frozen.

The Instruments application [65] was used to perform memory leak and ran-

dom input tests as well as a small amount of automated GUI tests. During an

application’s execution, Instruments can inform a tester of memory leaks that

occur throughout the normal course of an application’s usage. Once a memory

leak has been detected, Instruments tells the developer which function the memory

leak occurred in or where the creation of the leaked object took place. We aimed

to have no memory leaks in our own application code. Memory leaks could occur

within Apple’s framework code, but because this code was out of our control,

we could not prevent these leaks. ShareSynch must also not crash. In order to

facilitate the random inputs and events that may lead to ShareSynch crashing, we

used the UI AutoMonkey framework [18], which executes inside the Instruments

software. The UI AutoMonkey framework gives an iOS application rapid, random

events and inputs in order to test for application stability.

One of ShareSynch’s requirements states that it must be able to present multiple

hour-long sermons on a single battery charge. A script was created to simulate the

user presenting a slide show, and this script was run for two hours in order to test

for battery usage. The slide show used for testing contained images, videos, and

31

Table 4.1: ShareSynch Performance Testing

Item Maximum Time for
Completion on iPad Air

Saving Changes to Sermon Order 250 milliseconds

Saving Changes to Slide Visibility 250 milliseconds

Saving Note Edits 250 milliseconds

Application Boot 2 seconds

Loading Sermon Series Details 2 seconds

Saving New Slides 2 seconds

Creating a Variation 5 seconds

Restoring a Sermon 7 seconds

Loading Sermon 10 seconds

an appeal, which allowed each slide type to be used during the course of the test.

Before testing began, the device was connected to an external display via AirPlay

so as to simulate a real presentation as much as possible. Battery tests passed if

there was at least 15% battery left after two hours of the presentation simulation.

Devices were first tested at full screen brightness, and if a device did not meet the

minimum battery charge requirement, the device was subsequently tested at half

brightness and minimum brightness.

Along with the aforementioned test types, a mobile application must be tested

in its usage environment and on all directly-supported device types [24]. Device

testing ensured that the application ran efficiently on each device type and also

ensured that the GUI scaled appropriately on each directly supported screen

resolution. Device testing did not take place on tangentially supported devices.

User and acceptance testing were performed after all features have been fully

implemented in the application. These final two types of testing, along with some

32

device testing, were performed by ShareHim employees. Tests run by ShareHim

employees verified that the application met not only its listed requirements but

also its functional use by speakers.

33

Chapter 5

Testing and Evaluation Results

Over the course of unit testing, 85 test functions were created. Each of these test

functions ensured that one or more functions of a data model or data structure

class executed correctly or performed as required. Several bugs were discovered

and fixed because of these tests, including a problem with deleting the current

variation, an issue with duplicating a slide available in multiple languages, and a

bug with loading a series by its name. After the tests were created, they served as

helpful regression tests when more functionality was added; the regression tests

caught several errors that were created in the extended functionality.

Performance test results can be seen in Table 5.1. As shown in the table, every

single performance metric was well beneath the maximum time for completion.

Unfortunately, performance metrics for boot time are impossible to measure

with the XCTest framework and cannot accurately be measured by Xcode log

timestamps [66], so we tested boot time using a handheld stopwatch. Boot time

started when we tapped on the home screen icon for ShareSynch, and time ended

when the main menu became visible to the user. Ten boot time tests were executed,

and the average time is reported in the table. The test for saving changes to a

34

Table 5.1: ShareSynch Performance Testing Results

Item Maximum Time for
Completion on iPad Air

Actual Time for
Completion on iPad Air

Saving Changes to Sermon
Order 250 milliseconds 188 milliseconds

Saving Changes to Slide
Visibility 250 milliseconds 142 milliseconds

Saving Note Edits 250 milliseconds 2 milliseconds

Application Boot 2 seconds 0.99 seconds

Loading Sermon Series
Details 2 seconds 0.84 seconds

Saving New Slides 2 seconds 0.53 seconds

Creating a Variation 5 seconds 1.77 seconds

Restoring a Sermon 7 seconds 2.17 seconds

Loading Sermon 10 seconds 5.02 seconds

sermon order was made after moving a slide ten positions, and the slide visibility

test was executed with a change of ten different slides’ visibility. Twenty-six

sermons were installed for both the “Loading Sermon Series Details” and the

“Creating a Variation” tests. Times for restoring a sermon were gathered manually

using the timestamps provided in Xcode log statements, and the sermon restoration

process had to account for two user-created image slides, one user-created video

slide, three rearranged slides, and two hidden slides. With the exception of the

boot time and sermon restoration tests, all unit and performance tests were fully

automated.

Memory leak tests were performed several times throughout the course of

development, and a small number of memory leak errors were fixed in a third-

party library. No known memory leaks exist in our application code; however,

35

several small memory leaks still exist in the application. These leaks occur because

of Apple-provided code, so the remaining leaks are unfixable at this point in time.

These leaks are usually between sixteen and forty-eight bytes and are never above

240 bytes. During a short fifteen minute test of various portions of ShareSynch,

the application had fifty-one small memory leaks in Apple-provided code. The

UI AutoMonkey library was used to test a great deal of quick, random input

throughout the application. This library helped to discover several race conditions

that caused application crashes in the download functionality of the application.

Most GUI testing was primarily performed manually rather than via the Instru-

ments application. Creating effective GUI tests in Instruments, even with the help

of the Tuneup JS framework [67], is difficult and extremely time-consuming. We

used the Instruments GUI testing framework by manually creating a small GUI

test that performed several tests on the main menu, presentation, and edit screens.

The record and play back functionality of Instruments was used to assist in the

development of this GUI test. We found that Instruments often refused to run

any tests after a single code syntax error occurred until Instruments was restarted,

even if the cause of the error was removed. Instruments does not restart the

application between tests or after tests have completed, so a tester must manually

reset the application by themselves or create code to manually perform resets in

between each test. The lack of code completion and syntax highlighting within

Instruments makes development of tests tedious. Because of these difficulties,

GUI tests were performed manually on all directly-supported devices and the iOS

simulator. These manual tests analyzed each screen on both iOS 7 and iOS 8 as

well as in both the landscape and portrait device orientations. Two ShareHim

employees assisted us with this task, and we discovered several faulty graphical

36

areas of the application during the course of testing, including incorrectly sized

labels on small devices and text truncation errors.

GUI testing also brought about new ideas regarding the layout of the main

menu and select presentation screens of the application. The main menu was

substantially changed from its original version, and the select series screen and the

settings screens were both merged into the main menu. The select presentation

screen was tweaked to have a smaller amount of whitespace so that more content

could be displayed at one time. Screenshots of the new and improved GUI are

shown in Appendix B.

Battery tests were performed on ShareSynch’s three directly-supported devices:

the iPad Air, the iPad Mini, and the iPod Touch 5
th Generation. Each of the devices

was fully charged before test execution. Table 5.2 shows the results of battery tests

when each device’s screen brightness was set on the maximum level. Each device

passed its battery test at maximum brightness, so subsequent battery tests with a

less-intense brightness did not have to be performed. The iPad devices are able to

handle several additional hours of presentation time after a two-hour test, but the

iPod Touch should be used for a maximum of two hours before having its battery

recharged.

Table 5.2: ShareSynch Battery Test Results

iOS Device Starting Battery
Percentage

End Battery
Percentage

iPad Air 100% 64%

iPad Mini 100% 69%

iPod Touch 5
th

Generation 100% 19%

37

User and acceptance tests were performed by several ShareHim employees.

In combination with our own device tests, these tests helped to unearth several

new bugs in the iOS application. Once employees had used ShareSynch on their

own devices, the ShareHim employees made several feature changes and requests,

including the ability to delete activations and the ability to overwrite previously

installed sermons. A full list of change orders can be seen in Appendix A.4. After

the desired changes were made to ShareSynch iOS, ShareHim employees accepted

the application for submission to the iTunes App Store.

39

Chapter 6

Conclusion

ShareSynch is a proprietary presentation application currently available for Win-

dows and Mac OS X systems. Unique features of ShareSynch include the ability

to have different languages for sermon slides and speaker notes, pagination of

speaker notes in various font sizes, and the easy adjustment of appeal selections.

No currently known iOS application mirrors these unique and essential features.

The iOS version of ShareSynch was developed in Objective-C and is compatible

with the iPad Air, iPad Mini, and the iPod Touch 5
th Generation with tangential

support for several related devices; the iOS application also introduces several new

features, including a new file format and storage scheme that allows for the ability

to draw text onto an image so that one image can be used for many different slides,

downloadable sermon series, and dynamically generated PDF documents that con-

tain user-edited sermons and speaker notes. We finished developing and testing

the application on February 2, 2015; the final project contains over 13,000 lines of

code and over 7,000 lines of code documentation. Source code, documentation,

and the final project report have been delivered to ShareHim. ShareSynch became

publicly available in the iOS App Store on March 2, 2015. The application will see

40

further enhancements in future versions of the product including the ability to

install variations and playback high resolution videos.

41

Appendix A

Requirements Specification

A.1 Task Delineation

Most of the requirements in Section A.3 have been assigned to one of the following

task areas for organizational purposes. The applicable task area is found in brackets

before the requirement is given.

1. Presentation Mode

2. File and Database Implementation

3. Sermon Editing System & Settings

4. Sermon Slideshow Installation

5. UI Design and Implementation

6. Beta and User Testing

7. Final Changes, Bug Fixes, Testing, and Documentation

42

A.2 Hardware Requirements

• The application shall have direct support for iPod Touch 5
th Generation, iPad

2, and iPad Air with tangential support for iPhone 5, iPhone 5S, iPhone 5C,

iPad Mini, iPad Mini with Retina Display, iPad with Retina Display.

• The iOS device shall run iOS 7.1 or 8.x.

• The iOS device shall be compatible with an adapter that allows for VGA or

HDMI output.

A.3 Application Requirements

A.3.1 General

• [1] Upon opening a sermon in presentation mode, the application shall

ask users to turn off battery-consuming services when the network can be

reached.

• [1] Upon opening a sermon in presentation mode, the application shall

ask users to turn off battery-consuming services when the network can be

reached.

• [1] The application shall automatically remove the warning to turn off battery-

consuming services after 5 seconds.

• [5] The application shall support both landscape and portrait layouts in all

modes.

• [2] The application shall support separate different languages for application

text, sermon notes, and presentation slide content.

43

• [2] The application shall support JPEG or PNG formats for presentation slide

images.

• [1] The application shall support presentation slides that are text overlays on

images. The application shall support overlaying text of a given font, font

size, and font color onto an image at a given starting point, width, and height

for demoing purposes.

• [2] If an image or video uses the overlay text feature, the image or video

shall not be tied to a specific language so that multiple languages can use the

same image or video.

• [4] Any sermon series downloaded or installed shall be verified for integrity

via an accompanying checksum or hash.

• [4] The application shall check for newly downloaded (via iTunes or WiFi)

sermon series upon launch and install all new series upon launch.

• [6] The application shall support the presentation of multiple hour-long

sermons on a single battery charge when battery-consuming services (such

as WiFi and cellular data) are turned off.

• [1] The application shall be compatible with a Bluetooth remote for advancing

slides.

• [2] The application shall be compatible with multiple sermon series.

• [1] The application shall allow for presentations via an external video adapter

and through AirPlay.

• [4] The application shall verify that the users subscriptions are valid upon

opening the application.

44

• [1] When transitioning between slides, the application shall smoothly fade

from one slide to the next during the transition.

• [1] By default, the application shall mirror the users screen when connected

to an external screen.

• [1] The application shall start a timer when the user enters presentation

mode.

• [1] When the user leaves presentation mode, the application shall end the

timer. If the timer length is 20 minutes or longer, the presentation time length

and name of the presented sermon shall be saved in a JSON format.

• [4] The presentation time length along with the presented sermon name shall

be uploaded to ShareHim servers once every seven days.

A.3.2 Download & Installation

• The user shall be able to download the ShareSynch software for free from

the iTunes app store.

• [4] When opening the application for the first time, the application shall

prompt the user for their activation code or allow the user to use the demo

sermon series.

• [4] A successful activation code entry shall result in access to a specific set of

sermon series that the user can now download or install.

• [4] When downloaded from the app store, the app shall contain a single ser-

mon series entitled Demo that contains a single sermon for demo purposes.

45

• [4] The demo sermon series shall not be available after the user has down-

loaded a complete sermon series from ShareHim.

• [4] The application shall verify the users information with the ShareHim

website before granting access to non-demo sermon series downloads when

an internet connection is available.

• [4] If an internet connection is not available, the application shall prompt the

user for an activation code, which can be manually obtained from ShareHim

via phone or the internet. Any information that the user will need to give

ShareHim for activation shall be displayed along with this prompt.

• [4] The user shall have access to the Download Sermon Series page, which

contains a list of ShareHim sermon series available to subscribe to. Series not

currently available for the current user shall be grayed out.

• [4] The user shall be able to sort the list on the Download Sermon Series

page by name or by available series.

• [2] Slides, pictures, audio, and video shall not be accessible from outside

the iOS application. These resources shall be encapsulated in large archive

files that are password protected so that they are not easily accessible from

outside the application.

• [4] The user shall be able to install new sermon series through iTunes appli-

cation management or wirelessly over WiFi and cellular data.

• [4] The user shall see the size of a sermon series before downloading it over

WiFi and cellular data.

46

• [4] The user shall be able to view the amount of available space left in the

application for sermon series from the Download Sermon Series page.

• [4] The application shall give a warning if there is not enough space on the

device or in the application to download a given sermon series.

• [4] The user shall be able to start, pause, and resume the download of a

sermon series at any time.

• [4] The user shall see the progress, speed, and estimated download comple-

tion time of the sermon series download on the Download Sermon Series

page.

• [4] The user shall not be able to access any sermon of a series until the entire

series has been downloaded and installed.

A.3.3 Opening and Managing a Sermon Series

• [2] Upon opening the app, the user shall be presented with the following

options on the main menu: Load Last Used Sermon, Load Sermon, Download

Sermon Series, and Settings.

• [2] The user shall be returned to slide 1 of their last-used sermon upon

choosing Load Last Used Sermon on the main menu.

• [4] Selecting the Download Sermon option shall take the user to the Down-

load Sermon Series page.

• [2] Upon selecting Load Sermon from the main menu, the user shall be

provided with a list of available sermon series to choose from.

47

• [2] When the user chooses a sermon series, the user shall be taken to a new

view that contains thumbnail previews of all sermons within that series. This

view is the sermon selection screen.

• [2] From the sermon selection screen, the user shall see data on the selected

sermon series (slide language, note language, etc.), picture thumbnails of

each sermon in the series, and a toolbar at the bottom of the screen.

• [2] From the sermon selection screen toolbar, the user shall have the option

to change the series language for slides.

• [2] From the sermon selection screen toolbar, the user shall have the option

to change the series language for notes.

• [2] From the sermon selection screen toolbar, the user shall be able to enter

variation management mode

• [2] The variation management mode shall show a list of all sermon variations

for a given sermon series.

• [2] In variation management mode, the user shall be able to create a new

variation based on the default, unedited variation.

• [2] In variation management mode, the user shall be able to create a new

variation based on another variation.

• [2] In variation management mode, the user shall be able to delete variations

of a sermon series, but shall not be able to delete the original, unedited

variation.

• [2] In variation management mode, the user shall be able to switch the

currently loaded sermon series to a different variation of that series.

48

• [3] From the sermon selection screen toolbar, the user shall be able to generate

a PDF of a sermon. This PDF shall contain all user notes (as edited by the

user) along with a small picture of each slide.

• [3] The user shall be able to print or email the generated PDF.

• [2] From the sermon selection screen, the user shall be able to choose a

sermon in order to enter presentation mode.

A.3.4 Presentation Mode

• [2] The user shall see a loading progress indicator dialog when loading a

sermon will take longer than half a second.

• [2] The user shall be able to cancel loading a sermon via the progress indicator

dialog.

• [1] The application shall alert the user if there is no secondary display

available or if a secondary display is disconnected while in presentation

mode.

• [1] The speaker shall have button controls to control whether the external

screen mirrors the current display or projects the sermon slides and videos.

• [1] The user shall see a thumbnail preview of the previous, current, and next

slides along with the current slides notes.

• [1] The thumbnail previews of slides shall show that slide’s position in the

overall sermon.

• [1] The user shall be able to move forward (advance) and backward (go back)

by swiping left or right, by touching the right or left sides of the screen, by

49

swiping right or left, or by tapping the next/previous buttons, as defined by

a user-specified setting for advancing a sermon.

• [1] When sermon notes for a single slide do not fit on a single page during a

presentation, the user shall see a visual indicator when there are more notes

to display for the current slide.

• [1] When sermon notes for a single slide do not fit on a single page during

a presentation, advancing will scroll the sermon notes for a single slide

smoothly without moving the presentation to the next slide. If there are no

more notes to show, advancing shall move the presentation to the next slide.

• [1] The user shall be able to skip to any slide by scrolling the thumbnail

previews to the right (forward) or to the left (backward) and selecting a slide

by tapping on its thumbnail.

• [1] When scrolling the thumbnail previews, the previews shall not wrap from

end to beginning or vice versa.

• [1] The user shall be able to tap the thumbnail of the next or previous slide in

order to instantly jump to the next/previous slide without smooth scrolling

of notes.

• [1] The user shall be taken to the first slide after advancing on the final slide.

• [1] The user shall be taken to the last slide after going back on the first slide.

• [1] If the user is using an external keyboard or has a Bluetooth remote with

number capabilities, the user shall be taken to a specific slide number after

typing in the slide number and hitting Enter (←↩).

50

• [1] If the user is using an external keyboard or has a Bluetooth remote with

number capabilities, hitting the left and right arrow keys will move the

sermon backward or forward, respectively.

• [1] The user shall see the number of the currently active slide in the current

sermon along with the total number of slides in the current sermon in the

following format: [# of current slide]/[total # of slides].

• [1] The user shall see a toolbar at the bottom of the screen.

• [1] The user shall be able to increase or decrease the font size of sermon notes

from the toolbar.

• [3] The application shall remember any indentation as it increases font,

decreases font, and performs line wrapping.

• [1] The user shall be able to change the appeal song for a given sermon from

the toolbar.

• [1] The user shall be able to change the appeal options for a given sermon

from the toolbar to the following options: vocal, instrument only, text only.

• [1] Changes to the appeal song or appeal song options shall not come into

effect while the sermon is displaying the appeal. Changes shall come into

effect the next time the appeal slide is shown.

• [1] In the preview of a video slide, the user shall see the word Video along

with the length of the video in text on top of the preview for the video.

• [1] When a video is playing, the user shall see the length of time remaining

for the video playback only on the users device.

51

• [1] Some slides may be appeal slides. An appeal slide shall have text dynami-

cally written onto the slide that mirrors portions of the speakers notes. When

the user advances the appeal notes, if there are more notes to display, both

the notes on the users device and the text on the external display changes.

A.3.5 Edit Mode

• [3] The user shall be able to open sermons in edit mode from presentation

mode.

• [3] The user shall be able to change slide notes, slide order, and which slides

to display during a presentation in edit mode.

• [3] When editing a slides notes, the user shall have the following formatting

options: bold, italic, underline, and bullets.

• [3] The user shall be able to use the rearrange slides mode while in edit

mode.

• [3] In rearrange slides mode, the user shall be able to rearrange the slides

of a sermon by dragging and dropping slides from one location to another

while viewing thumbnail previews of all slides in a sermon.

• [3] The user shall see the numerical location of each slide in the lower

right-hand corner of each slide preview.

• [3] The user shall be able to select one or more slides at one time to set them

as hidden or shown when rearranging slides.

• [3] The user shall be able to insert new slides containing pictures or video

from their local iOS device into the current sermon.

52

• [3] The user shall be able to insert new slides containing pictures, video, or

slides from another sermon into the current sermon.

• [3] The user shall be able to duplicate a slide, including notes, at the current

slide position.

• [3] The user shall be able to delete slides, including their accompanying

resource, if the slide was created by the user and the resource was imported

into the application by the user. If the resource was not imported by the user,

only the slide shall be deleted.

• [3] When inserting new slides, the user shall be able to insert new slides

before or after the current slide.

• [3] Changes to sermon order or contents shall be saved automatically upon

the change being made.

• [3] Changes to sermon notes shall be saved automatically upon changing to

a different slide in edit mode, when the user exits edit mode, or when the

user leaves the app for any reason (such as via the home button).

• [3] The user shall see both the current slide and its notes while editing a

slides notes.

• [3] The user shall have undo and redo buttons for the following change types:

change of note text, hiding or showing a slide, changing a slides position,

and adding a slide.

• [3] The maximum amount of times the user shall be able to undo or redo

shall be 10 times.

53

• [3] The undo and redo information shall be lost when the user leaves edit

mode.

• [3] The user shall be able to restore a slides notes to its initial contents.

• [3] The user shall be able to reset an entire sermon to its initial state. This

operation shall be confirmed with the user before being performed. Resetting

a sermon restores all slides to their default position, notes, and visibility.

Resetting a sermon also deletes any custom slides created by the user.

• [3] The user shall be able to edit the text shown on top of appeal videos. This

is done via the normal editing interface for notes. The notes on top of an

appeal video may advance along with the speakers notes. The format for

appeal text shall mirror the PC version of ShareSynch. Notes to be shown on

top of the appeal video shall be inside a <C><c> tag. Advancing the notes

on an appeal slide shall advance the text displayed on the external screen to

the text within the next <C><c> tag, if available. A single <R> tag shall

designate that the text on the external screen shall be removed, and any text

after the <R> tag will be displayed as the final notes for the speaker.

A.3.6 Settings

• [3] The user shall be able to view and edit applications settings after selecting

Settings on the main menu.

• [3] The user shall be able to view their series subscription details and activa-

tion code.

• [3] The user shall be able to view information about the mobile application

and its creators.

54

• [3] The user shall be able to view information on how much storage space

the application is using.

• [3] The user shall be able to permanently delete sermon series from their

device.

• [3] The user shall be able to change their default method of advancing sermon

notes (swipe, previous/next buttons, or touching the left/right side of the

screen).

A.4 Change Orders

• The application shall directly support the iPad Mini.

• The iPad 2 shall be tangentially supported.

• The user shall be able to open a PDF for previewing without emailing or

printing the PDF.

• In presentation mode, the user shall see each slide’s position as well as the

total number of slides in the presentation in the preview thumbnail for each

slide. The format for slide positions shall be the following: [# of current

slide] / [total # of slides].

• The user shall not have buttons available in presentation mode for advancing

or going back through the sermon.

• In presentation mode, the user shall see a visual indicator when moving the

slide show forward will move the presentation to the next slide. The user

shall not see a visual indicator when there are more notes to display for the

current slide.

55

• A playing video’s audio shall fade in and out when the presentation transi-

tions to or from that video.

• Available appeal videos shall be displayed as available in every sermon

language regardless of the appeal video language.

• Available appeal videos shall be displayed in a table and sorted by language.

• The list of available appeal videos shall indicate to the user whether the listed

appeal videos are available as vocal videos, instrumental videos, or both.

• The application shall not prompt the user for their subscription or activation

code until they attempt to install a sermon for which they have no active

subscription.

• The user shall be able to overwrite previously installed sermons via new and

updated sermon install files.

• The user shall be able to have multiple activations for the same series.

• The user shall be able to access a list of current activations and their expiration

dates from the activation screen.

• The user shall be able to quickly fill in the activation screen’s text fields with

data from a previous activation.

• The user shall be able to delete activations.

• The application shall have a help screen that gives the user information about

utilizing the application and allows for a sound test.

• The user shall be able to download vocal appeal videos separately from

instrumental appeal videos.

56

• Any downloads for the demo sermon series shall be designated as belonging

to the demo by appending the string “(Demo)” to the title of a demo series

download.

• The user shall be able to access the available series list from the main menu.

• The user shall be able to access the settings list from the main menu.

• The user shall be able to show or hide the lists of available series and settings

from the main menu.

• From the about screen, the user shall see the amount of device space remain-

ing, not the amount of space that is being used by the application.

• The user shall be able to access license information for open-source code that

is utilized in the application from the about screen.

• The user shall see the expiration dates for all languages for a series from the

Manage Sermon Series screen.

• The user shall be able to delete appeal videos from the settings portion of

the application.

• When managing appeal video downloads, the user shall be able to delete

installed appeal videos on a language-by-language basis and shall be able to

delete vocal videos separately from instrumental videos.

57

Appendix B

Application Screenshots

58

Figure B.1: ShareSynch’s main menu screen lets users directly access available sermon
series and settings without having to open another page. The sections for available sermon
series and settings can be expanded or contracted as necessary.

59

Figure B.2: The select presentation screen shows which variation is currently loaded
and which sermons are currently available. The user can also change the slide language,
change the speaker note language, or generate a PDF of a selected sermon from this screen.
The currently selected sermon cell is highlighted in light blue, and its title text is set to a
bold font.

60

Figure B.3: Presentation mode prominently displays speaker notes for the user. Arrows
indicate that advancing the speaker notes will move the presentation to the next slide.
When a sermon has an appeal, appeal options are shown in the toolbar along with the
change font and presentation mode settings.

61

Figure B.4: ShareSynch lets users edit a sermon presentation in a variety of ways. Notes
are editable in rich text. Slides can be inserted from the user’s device or from another
sermon within the same series. The user can make a variety of other changes to the
presentation from this screen, such as changing sermon order or slide visibility.

62

Figure B.5: ShareSynch lets users preview dynamically generated PDF documents before
sharing them with others. The user’s customized speaker notes and sermon order are
reflected in these documents. The page-breaking algorithm attempts to minimize the
amount of whitespace at the end of each page by placing as much of a slide’s speaker
notes on the current page as possible before inserting the rest of the notes on subsequent
pages.

63

Bibliography

[1] “ShareHim programs,” http://sharehim.org/about-us/, ShareHim, 2014. 1

[2] “Idc: Smartphone os market share 2014, 2013, 2012, and 2011,” http://ww

w.idc.com/prodserv/smartphone-os-market-share.jsp, IDC Corporate USA,

2014. 1

[3] “What qualifies an android “display”?” http://stackoverflow.com/question

s/16745935/what-qualifies-an-android-display, Stack Overflow, 2013. 1

[4] “Dashboards,” https://developer.android.com/about/dashboards/index.h

tml, Google Inc., 2014. 1

[5] “DisplayManager,” http://developer.android.com/reference/android/hard

ware/display/DisplayManager.html, Google Inc., 2014. 1

[6] “iOS: About apple digital av adapters,” http://support.apple.com/kb/H

T4108, Apple Inc., 2014. 1

[7] “App store distribution,” https://developer.apple.com/support/appstore/,

Apple Inc., 2014. 1

[8] “Multiple display programming guide for iOS,” https://developer.apple.co

m/Library/ios/documentation/WindowsViews/Conceptual/WindowAn

http://sharehim.org/about-us/
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://stackoverflow.com/questions/16745935/what-qualifies-an-android-display
http://stackoverflow.com/questions/16745935/what-qualifies-an-android-display
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html
http://developer.android.com/reference/android/hardware/display/DisplayManager.html
http://developer.android.com/reference/android/hardware/display/DisplayManager.html
http://support.apple.com/kb/HT4108
http://support.apple.com/kb/HT4108
https://developer.apple.com/support/appstore/
https://developer.apple.com/Library/ios/documentation/WindowsViews/Conceptual/WindowAndScreenGuide/UsingExternalDisplay/UsingExternalDisplay.html
https://developer.apple.com/Library/ios/documentation/WindowsViews/Conceptual/WindowAndScreenGuide/UsingExternalDisplay/UsingExternalDisplay.html
https://developer.apple.com/Library/ios/documentation/WindowsViews/Conceptual/WindowAndScreenGuide/UsingExternalDisplay/UsingExternalDisplay.html
https://developer.apple.com/Library/ios/documentation/WindowsViews/Conceptual/WindowAndScreenGuide/UsingExternalDisplay/UsingExternalDisplay.html

64

dScreenGuide/UsingExternalDisplay/UsingExternalDisplay.html, Apple Inc.,

2012. 1

[9] L. Brutschy, P. Ferrara, and P. Müller, “Static analysis for independent

app developers,” SIGPLAN Not., vol. 49, no. 10, pp. 847–860, Oct.

2014. [Online]. Available: http://doi.acm.org.ezproxy.southern.edu/10.1145/

2714064.2660219 2.1

[10] A. I. Wasserman, “Software engineering issues for mobile application develop-

ment,” in Proceedings of the FSE/SDP workshop on Future of software engineering

research. ACM, 2010, pp. 397–400. 2.1, 2.3

[11] H. Muccini, A. Di Francesco, and P. Esposito, “Software testing of mobile

applications: Challenges and future research directions,” in Proceedings

of the 7th International Workshop on Automation of Software Test, ser. AST

’12. Piscataway, NJ, USA: IEEE Press, 2012, pp. 29–35. [Online]. Available:

http://dl.acm.org.ezproxy.southern.edu/citation.cfm?id=2663608.2663615 2.1

[12] J. Dehlinger and J. Dixon, “Mobile application software engineering: Chal-

lenges and research directions,” in Workshop on Mobile Software Engineering,

2011. 2.1, 2.2

[13] B. N. Nguyen, B. Robbins, I. Banerjee, and A. Memon, “Guitar: An

innovative tool for automated testing of gui-driven software,” Automated

Software Engg., vol. 21, no. 1, pp. 65–105, Mar. 2014. [Online]. Available:

http://dx.doi.org.ezproxy.southern.edu/10.1007/s10515-013-0128-9 2.1

[14] “Calabash,” http://calaba.sh/, Xamarin Inc., 2015. 2.1

https://developer.apple.com/Library/ios/documentation/WindowsViews/Conceptual/WindowAndScreenGuide/UsingExternalDisplay/UsingExternalDisplay.html
https://developer.apple.com/Library/ios/documentation/WindowsViews/Conceptual/WindowAndScreenGuide/UsingExternalDisplay/UsingExternalDisplay.html
https://developer.apple.com/Library/ios/documentation/WindowsViews/Conceptual/WindowAndScreenGuide/UsingExternalDisplay/UsingExternalDisplay.html
http://doi.acm.org.ezproxy.southern.edu/10.1145/2714064.2660219
http://doi.acm.org.ezproxy.southern.edu/10.1145/2714064.2660219
http://dl.acm.org.ezproxy.southern.edu/citation.cfm?id=2663608.2663615
http://dx.doi.org.ezproxy.southern.edu/10.1007/s10515-013-0128-9
http://calaba.sh/

65

[15] “Uiautomation,” https://github.com/kif-framework/KIF, KIF Framework,

2015. 2.1

[16] “Xamarin test cloud,” http://developer.xamarin.com/testcloud/, Xamarin

Inc., 2015. 2.1

[17] “Uiautomation,” https://developer.apple.com/library/ios/documentation/

DeveloperTools/Conceptual/InstrumentsUserGuide/UsingtheAutomationI

nstrument/UsingtheAutomationInstrument.html, Apple Inc., 2014. 2.1

[18] J. Penn, “UI AutoMonkey,” https://github.com/jonathanpenn/ui-auto-monk

ey, 2013. 2.1, 4

[19] B. Biel and V. Gruhn, “Usability-improving mobile application development

patterns,” in Proceedings of the 15th European Conference on Pattern Languages of

Programs. ACM, 2010, p. 11. 2.2

[20] B. Lew, “iOS resolution quick reference,” http://www.iosres.com/, 2014. 2.2

[21] “Cross platform mobile development tools: Market analysis & forecast - third

edition,” https://www.reportbuyer.com/product/2266370/cross-platform-

mobile-development-tools-market-analysis-and-forecast-third-edition.html,

Smith’s Point Analytics, 2014. 2.3, 3.2

[22] Y. Ridene and F. Barbier, “A model-driven approach for automating

mobile applications testing,” in Proceedings of the 5th European Conference

on Software Architecture: Companion Volume, ser. ECSA ’11. New

York, NY, USA: ACM, 2011, pp. 9:1–9:7. [Online]. Available: http:

//doi.acm.org/10.1145/2031759.2031770 2.3, 3.2

https://github.com/kif-framework/KIF
http://developer.xamarin.com/testcloud/
https://developer.apple.com/library/ios/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/UsingtheAutomationInstrument/UsingtheAutomationInstrument.html
https://developer.apple.com/library/ios/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/UsingtheAutomationInstrument/UsingtheAutomationInstrument.html
https://developer.apple.com/library/ios/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/UsingtheAutomationInstrument/UsingtheAutomationInstrument.html
https://github.com/jonathanpenn/ui-auto-monkey
https://github.com/jonathanpenn/ui-auto-monkey
http://www.iosres.com/
https://www.reportbuyer.com/product/2266370/cross-platform-mobile-development-tools-market-analysis-and-forecast-third-edition.html
https://www.reportbuyer.com/product/2266370/cross-platform-mobile-development-tools-market-analysis-and-forecast-third-edition.html
http://doi.acm.org/10.1145/2031759.2031770
http://doi.acm.org/10.1145/2031759.2031770

66

[23] A. Charland and B. LeRoux, “Mobile application development: Web vs.

native,” Queue, vol. 9, no. 4, pp. 20:20–20:28, Apr. 2011. [Online]. Available:

http://doi.acm.org/10.1145/1966989.1968203 2.3

[24] K. Haller, “Mobile testing,” SIGSOFT Softw. Eng. Notes, vol. 38, no. 6, pp. 1–8,

Nov. 2013. [Online]. Available: http://doi.acm.org/10.1145/2532780.2532813

2.4, 4

[25] H. Khalid, E. Shihab, M. Nagappan, and A. Hassan, “What do mobile app

users complain about? a study on free ios apps,” IEEE Software, vol. 99, no.

PrePrints, p. 1, 2014. 2.4

[26] J. Jung, S. Han, and D. Wetherall, “Short paper: Enhancing mobile application

permissions with runtime feedback and constraints,” in Proceedings of the

Second ACM Workshop on Security and Privacy in Smartphones and Mobile

Devices, ser. SPSM ’12. New York, NY, USA: ACM, 2012, pp. 45–50. [Online].

Available: http://doi.acm.org/10.1145/2381934.2381944 2.4

[27] “Google slides,” Google, Inc. 2.5, 2.5.1

[28] “Keynote,” https://itunes.apple.com/us/app/keynote/id361285480, Apple

Inc., 2014. 2.5, 2.5.1

[29] “Prezi,” https://itunes.apple.com/us/app/prezi/id407759942, Prezi Inc.,

2014. 2.5, 2.5.2

[30] “CloudOn,” https://itunes.apple.com/us/app/cloudon-document-editor-

ms/id474025452, CloudOn, Inc., 2014. 2.5

[31] “Dropbox,” http://www.dropbox.com/, Dropbox, Inc, 2015. 2.5

http://doi.acm.org/10.1145/1966989.1968203
http://doi.acm.org/10.1145/2532780.2532813
http://doi.acm.org/10.1145/2381934.2381944
https://itunes.apple.com/us/app/keynote/id361285480
https://itunes.apple.com/us/app/prezi/id407759942
https://itunes.apple.com/us/app/cloudon-document-editor-ms/id474025452
https://itunes.apple.com/us/app/cloudon-document-editor-ms/id474025452
http://www.dropbox.com/

67

[32] “CloudOn,” http://www.cloudon.com/, CloudOn, Inc., 2015. 2.5

[33] “Keynote,” https://www.apple.com/ios/keynote/, Apple Inc., 2014. 2.5.1

[34] “Microsoft PowerPoint for iPad,” https://itunes.apple.com/us/app/micros

oft-powerpoint-for-ipad/id586449534, Microsoft Corporation, 2014. 2.5.1

[35] “WPS Office,” https://itunes.apple.com/us/app/wps-office-free-+-pdf-co

mpatible/id762263023, Kingsoft Office Software, Inc., 2014. 2.5.1

[36] “Flowvella: Presentation app,” https://itunes.apple.com/us/app/flowboard-

presentation-app/id630717527, Flowboard LLC, 2014. 2.5.2

[37] “Haiku Deck,” https://itunes.apple.com/us/app/haiku-deck-presentation-

slideshow/id536328724, Haiku Deck, Inc, 2014. 2.5.2

[38] “SlideShark Presentation App,” https://itunes.apple.com/us/app/slidesha

rk-presentation-app/id471369684, Brainshark, Inc., 2013. 2.5.3

[39] “Nearpod,” https://itunes.apple.com/us/app/nearpod/id523540409,

Panarea, 2014. 2.5.3

[40] “Gotomeeting,” Citrix. 2.5.3

[41] “Model-View-Controller,” https://developer.apple.com/library/ios/docu

mentation/General/Conceptual/CocoaEncyclopedia/Model-View-Controll

er/Model-View-Controller.html#//apple ref/doc/uid/TP40010810-CH14-

SW1, Apple, Inc., 2012. 3.2

[42] “Delegates and data sources,” https://developer.apple.com/library/ios/do

cumentation/General/Conceptual/CocoaEncyclopedia/DelegatesandDataS

http://www.cloudon.com/
https://www.apple.com/ios/keynote/
https://itunes.apple.com/us/app/microsoft-powerpoint-for-ipad/id586449534
https://itunes.apple.com/us/app/microsoft-powerpoint-for-ipad/id586449534
https://itunes.apple.com/us/app/wps-office-free-+-pdf-compatible/id762263023
https://itunes.apple.com/us/app/wps-office-free-+-pdf-compatible/id762263023
https://itunes.apple.com/us/app/flowboard-presentation-app/id630717527
https://itunes.apple.com/us/app/flowboard-presentation-app/id630717527
https://itunes.apple.com/us/app/haiku-deck-presentation-slideshow/id536328724
https://itunes.apple.com/us/app/haiku-deck-presentation-slideshow/id536328724
https://itunes.apple.com/us/app/slideshark-presentation-app/id471369684
https://itunes.apple.com/us/app/slideshark-presentation-app/id471369684
https://itunes.apple.com/us/app/nearpod/id523540409
https://developer.apple.com/library/ios/documentation/General/Conceptual/CocoaEncyclopedia/Model-View-Controller/Model-View-Controller.html#//apple_ref/doc/uid/TP40010810-CH14-SW1
https://developer.apple.com/library/ios/documentation/General/Conceptual/CocoaEncyclopedia/Model-View-Controller/Model-View-Controller.html#//apple_ref/doc/uid/TP40010810-CH14-SW1
https://developer.apple.com/library/ios/documentation/General/Conceptual/CocoaEncyclopedia/Model-View-Controller/Model-View-Controller.html#//apple_ref/doc/uid/TP40010810-CH14-SW1
https://developer.apple.com/library/ios/documentation/General/Conceptual/CocoaEncyclopedia/Model-View-Controller/Model-View-Controller.html#//apple_ref/doc/uid/TP40010810-CH14-SW1
https://developer.apple.com/library/ios/documentation/General/Conceptual/CocoaEncyclopedia/DelegatesandDataSources/DelegatesandDataSources.html#//apple_ref/doc/uid/TP40010810-CH11
https://developer.apple.com/library/ios/documentation/General/Conceptual/CocoaEncyclopedia/DelegatesandDataSources/DelegatesandDataSources.html#//apple_ref/doc/uid/TP40010810-CH11
https://developer.apple.com/library/ios/documentation/General/Conceptual/CocoaEncyclopedia/DelegatesandDataSources/DelegatesandDataSources.html#//apple_ref/doc/uid/TP40010810-CH11
https://developer.apple.com/library/ios/documentation/General/Conceptual/CocoaEncyclopedia/DelegatesandDataSources/DelegatesandDataSources.html#//apple_ref/doc/uid/TP40010810-CH11

68

ources/DelegatesandDataSources.html#//apple ref/doc/uid/TP40010810-

CH11, Apple, Inc., 2012. 3.2

[43] “iOS app programming guide,” https://developer.apple.com/library/ios/do

cumentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Introduct

ion/Introduction.html, Apple, Inc., 2013. 3.2

[44] “File system basics,” https://developer.apple.com/library/mac/documentat

ion/FileManagement/Conceptual/FileSystemProgrammingGuide/FileSys

temOverview/FileSystemOverview.html, Apple, Inc., 2012. 3.2

[45] “SQLite,” http://www.sqlite.org/, 2014. 3.2

[46] “The mit license template,” http://opensource.org/licenses/MIT, 2015. 3.2

[47] “The bsd 2-clause license template,” http://opensource.org/licenses/BSD-2-

Clause, 2015. 3.2

[48] “The bsd 3-clause license template,” http://opensource.org/licenses/BSD-3-

Clause, 2015. 3.2

[49] M. Thompson, “Afnetworking,” https://github.com/AFNetworking/AFNe

tworking, 2015. 3.1

[50] C. T, “Ctassetspickercontroller,” https://github.com/chiunam/CTAssetsPic

kerController, 2014. 3.1

[51] L. Scott, “Draggablecollectionview,” https://github.com/lukescott/Draggab

leCollectionView, 2014. 3.1

[52] O. Drobnik, “Dtcoretext,” https://github.com/Cocoanetics/DTCoreText,

2014. 3.1

https://developer.apple.com/library/ios/documentation/General/Conceptual/CocoaEncyclopedia/DelegatesandDataSources/DelegatesandDataSources.html#//apple_ref/doc/uid/TP40010810-CH11
https://developer.apple.com/library/ios/documentation/General/Conceptual/CocoaEncyclopedia/DelegatesandDataSources/DelegatesandDataSources.html#//apple_ref/doc/uid/TP40010810-CH11
https://developer.apple.com/library/ios/documentation/General/Conceptual/CocoaEncyclopedia/DelegatesandDataSources/DelegatesandDataSources.html#//apple_ref/doc/uid/TP40010810-CH11
https://developer.apple.com/library/ios/documentation/General/Conceptual/CocoaEncyclopedia/DelegatesandDataSources/DelegatesandDataSources.html#//apple_ref/doc/uid/TP40010810-CH11
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Introduction/Introduction.html
https://developer.apple.com/library/mac/documentation/FileManagement/Conceptual/FileSystemProgrammingGuide/FileSystemOverview/FileSystemOverview.html
https://developer.apple.com/library/mac/documentation/FileManagement/Conceptual/FileSystemProgrammingGuide/FileSystemOverview/FileSystemOverview.html
https://developer.apple.com/library/mac/documentation/FileManagement/Conceptual/FileSystemProgrammingGuide/FileSystemOverview/FileSystemOverview.html
http://www.sqlite.org/
http://opensource.org/licenses/MIT
http://opensource.org/licenses/BSD-2-Clause
http://opensource.org/licenses/BSD-2-Clause
http://opensource.org/licenses/BSD-3-Clause
http://opensource.org/licenses/BSD-3-Clause
https://github.com/AFNetworking/AFNetworking
https://github.com/AFNetworking/AFNetworking
https://github.com/chiunam/CTAssetsPickerController
https://github.com/chiunam/CTAssetsPickerController
https://github.com/lukescott/DraggableCollectionView
https://github.com/lukescott/DraggableCollectionView
https://github.com/Cocoanetics/DTCoreText

69

[53] J. L. D. Silva, “Filehash,” https://github.com/JoeKun/FileMD5Hash, 2014.

3.1

[54] N. Lockwood, “iCarousel,” https://github.com/nicklockwood/iCarousel,

2014. 3.1

[55] M. I. Qurashi, “Iqkeyboardmanager,” https://github.com/hackiftekhar/IQ

KeyboardManager, 2014. 3.1

[56] J. Nunez, “Jnkeychain,” https://github.com/jeremangnr/JNKeychain, 2014.

3.1

[57] K. Schwaiger, “KSLabel,” https://github.com/vigorouscoding/KSLabel, 2012.

3.1

[58] M. Greenfield, “Mgboxkit,” https://github.com/sobri909/MGBoxKit, 2014.

3.1

[59] M. Rackwitz, “Mrprogress,” https://github.com/mrackwitz/MRProgress,

2014. 3.1

[60] “Mscellaccessory,” https://github.com/bitmapdata/MSCellAccessory,

bitmapdata, 2014. 3.1

[61] “Objective-zip,” https://github.com/flyingdolphinstudio/Objective-Zip, Fly-

ing Dolphin Studio, 2013. 3.1

[62] A. W. Donoho, “Reachability,” https://github.com/pokeb/asi-http-request/

tree/master/External/Reachability, 2012. 3.1

[63] Deadpikle, “ios-rich-text-editor,” https://github.com/Deadpikle/iOS-Rich-

Text-Editor, 2015. 3.1

https://github.com/JoeKun/FileMD5Hash
https://github.com/nicklockwood/iCarousel
https://github.com/hackiftekhar/IQKeyboardManager
https://github.com/hackiftekhar/IQKeyboardManager
https://github.com/jeremangnr/JNKeychain
https://github.com/vigorouscoding/KSLabel
https://github.com/sobri909/MGBoxKit
https://github.com/mrackwitz/MRProgress
https://github.com/bitmapdata/MSCellAccessory
https://github.com/flyingdolphinstudio/Objective-Zip
https://github.com/pokeb/asi-http-request/tree/master/External/Reachability
https://github.com/pokeb/asi-http-request/tree/master/External/Reachability
https://github.com/Deadpikle/iOS-Rich-Text-Editor
https://github.com/Deadpikle/iOS-Rich-Text-Editor

70

[64] “iOS human interface guidelines,” https://developer.apple.com/library/iO

S/documentation/userexperience/conceptual/mobilehig/, Apple, Inc., 2014.

3.3.5

[65] “Instruments user guide,” https://developer.apple.com/library/mac/docu

mentation/DeveloperTools/Conceptual/InstrumentsUserGuide/Instrumen

tsUserGuide.pdf, Apple Inc., 2014. 4

[66] “How to calculate iOS app boot time,” http://stackoverflow.com/questions/

23349570/how-to-calculate-ios-app-boot-time, Stack Overflow, 2014. 5

[67] A. Vollmer, “Tuneup JS,” http://www.tuneupjs.org/, 2014. 5

https://developer.apple.com/library/iOS/documentation/userexperience/conceptual/mobilehig/
https://developer.apple.com/library/iOS/documentation/userexperience/conceptual/mobilehig/
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/InstrumentsUserGuide.pdf
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/InstrumentsUserGuide.pdf
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/InstrumentsUserGuide.pdf
http://stackoverflow.com/questions/23349570/how-to-calculate-ios-app-boot-time
http://stackoverflow.com/questions/23349570/how-to-calculate-ios-app-boot-time
http://www.tuneupjs.org/

	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Quality Assurance
	Design Patterns
	Mobile Platforms
	User Expectations
	Current Mobile Presentation Applications
	Full-Featured Applications
	Template-based Applications
	Other Presentation Applications

	ShareSynch iOS Development and Implementation
	Application Summary
	Development Approach
	Task Delineation
	Presentation Mode
	File and Database Implementation
	Sermon Editing System & Settings
	Sermon Slideshow Installation
	UI Design and Implementation
	Beta and User Testing
	Final Changes, Bug Fixes, Testing, and Documentation

	Final Deliverables

	Testing & Evaluation Plan
	Testing and Evaluation Results
	Conclusion
	Requirements Specification
	Task Delineation
	Hardware Requirements
	Application Requirements
	General
	Download & Installation
	Opening and Managing a Sermon Series
	Presentation Mode
	Edit Mode
	Settings

	Change Orders

	Application Screenshots
	Bibliography

