
Chapter 4

Creating Spatial Data

Necessary Information

❖ Spatial Reference System!
❖ Example: 4326 (WGS84)!

❖ Type of geometry!
❖ Geometry / Geography

❖ Datatype!
❖ Point, LineString, Polygon, etc.!

❖ Coordinates!
❖ ‘Point(23,32, 4326)’

SELECT
geography::STPointFromText(‘POINT(153 -27.5)’, 4326);

Datatype::Method(Coordinates, SRID)

Example

Methods of Creation

❖ Directly Create SQL Server SQLGeometry type!
❖ geography::Point(40, –100, 4269)

❖ Parse from several formats using geometry methods!

❖ WKT (Well Known Text)!

❖ WKB (Well Known Binary)!

❖ GML (Geography Markup Language!

❖ API to build programmatically!

❖ Classes SqlGeometryBuilder and SqlGeographyBuilder

Well-Known Text Methods

❖ Simple format that we have seen in
sys.spatial_reference_systems

❖ Advantages:!
❖ Common and simple format!
❖ Easy to read and identify information

in markup!
❖ Disadvantages!

❖ Creating objects through parsing into
internal binary format is slower!

❖ Rounding errors on floating point
values being represented in text format

geometry::Parse('POINT(30 40)')

0x00000000010C0000000000003E400000000000004440

Parsing a Point

❖ Well-known text representation!
❖ POINT(153,-27.5)!

❖ Calling STPointFromText
method to parse (string of
SqlChars)

SELECT
geometry::STPointFromText('POINT(153 -27.5)’, 0);

SELECT
geography::STPointFromText('POINT(153 -27.5)', 4326);

Other Examples

SELECT 
geometry::STLineFromText('LINESTRING(300500 600150, 310200 602500)',
27700);

SELECT 
geometry::STPolygonFromText('POLYGON((1 1, 6 1, 6 4, 1 4, 1 1))',
27700);

Recall our Types….

Recall our Types….

❖ More generic method can be
used for parsing!
❖ STGeomFromText!

❖ Useful for parsing variety of
WKTs into one table of
geometry/geography type!

❖ Even more generic if using
SRID 0 or 4326 (WGS84): Parse !

❖ Parse is called by default if we
try to set geometry field equal
to just a character string

Generic Parsing Methods

SELECT 
geometry::STGeomFromText('LINESTRING(300500 600150, 310200 602500)',
4326);

DECLARE @Square geography =  
geometry::Parse('POLYGON((1 1, 6 1, 6 4, 1 4, 1 1))');

DECLARE @Square geography = 'POLYGON((1 1, 6 1, 6 4, 1 4, 1 1))';

SQL Server Demo

Use of .NET classes

❖ SqlGeometry and SqlGeography Classes!
❖ STGeomFromText method requires SqlChars to be passed in, where

as Parse can take a C# String.

SqlGeography Delhi = SqlGeography.Parse("POINT(77.25 28.5)");

SqlGeography Delhi = SqlGeography.STGeomFromText(new
SqlChars("POINT(77.25 28.5)"), 4326);

Retrieving WKT from SQL Server Types

❖ Recall that SQL Server stores all geometry and geography objects in a binary
format!

❖ Methods are provided to convert binary back into WKT format!
❖ STAsText()!

❖ OGC-compliant method, returns SqlChars (nvarchar). Only returns
2D coordinates, will ignore z or m values.!

❖ AsTextZM()!
❖ Same as STAsText(), but includes z and m values!

❖ ToString()!
❖ .NET base class Object defines this method for displaying object ivars,

etc. Calls AsTextZM(), but will return a C# string type rather than
SQLChars if in .NET code

Retrieving WKT from SQL Server Types

DECLARE @Point geometry =
 geometry::STPointFromText('POINT(14 9 7)', 0);
SELECT
 @Point.STAsText() AS STAsText,
 @Point.AsTextZM() AS AsTextZM,
 @Point.ToString() AS ToString;

STAsText AsTextZM ToString

POINT (14 9) POINT (14 9 7) POINT (14 9 7)

Creating Spatial Data from Well-Known Binary

❖ Another standard way of
representing data, defined by
OGC!

❖ Contains header and stream of
8 byte values representing
coordinates!

❖ Unfortunately different from
internal SQL Server binary
format, still need to use
methods for input conversion

Creating Spatial Data from Well-Known Binary

❖ Advantages!
❖ Faster than parsing WKT, as

coordinates are 8 bytes in
both internal format and
WKB so parsing can be
efficient!

❖ Floating point values do not
lose precision with rounding
to decimal format!

❖ Disadvantages!
❖ Not human readable

WKB Representation of a Point

0x00000000014001F5C28F5C28F6402524DD2F1A9FBE

SQL WKB Methods

SELECT 
geometry::STGeomFromWKB(0x00000000014001F5C28F5C28F6402524DD
2F1A9FBE, 2099);

Note that SRID is not serialized into WKB

DECLARE @g geometry =
 geometry::STPointFromText('POINT(14 9 7)', 0);
SELECT
 @g.STAsBinary();

0x01010000000000000000002C400000000000002240

SQL WKB Methods

❖ Note that like with STAsText() method, STAsBinary() drops the z and m
fields. If z and m are desired, use the method AsBinaryZM().

DECLARE @g geometry =
 geometry::STPointFromText('POINT(14 9 7)', 0);
SELECT
 @g.STAsBinary();
 @g.AsBinaryZM();

0x01010000000000000000002C400000000000002240

0x01E90300000000000000002C4000000000000022400000000000001C40

Creating Spatial Data from Geometry Markup Language

❖ Geometry Markup Language is a XML based format for representing spatial
information.!

❖ Be aware: coordinates are in latitude-longitude order rather than longitude-
latitude order (what WKT uses). However, geometry is in x-y order just as
WKT.!

❖ No support for z or m coordinates, supports only 2D.!
❖ No commas are necessary for lists of position pairs.

<Point xmlns=“http://www.opengis.net/gml">
 <pos>47.6 -122.3</pos>
</Point>

Creating Spatial Data from Geometry Markup Language

❖ Typically used to transmit information over the internet (see also GeoJSON)!
❖ Namespace required to be valid GML, otherwise just XML document  

xmlns=“http://www.opengis.net/gml”

DECLARE @NoGMLNameSpace xml =
'<LineString>
 <posList>-6 4 3 -5</posList>
</LineString>';
SELECT geometry::GeomFromGml(@NoGMLNameSpace, 0);

System.FormatException: 24129: The given XML instance is not valid because the
top- level tag is LineString. The top-level element of the input Geographic
Markup Language (GML) must contain a Point, LineString, Polygon, MultiPoint,
MultiGeometry, MultiCurve, MultiSurface, Arc, ArcString, CompositeCurve,
PolygonPatch or FullGlobe (geography Data Type only) object.

http://www.opengis.net/gml%E2%80%9D

GML Advantages and Disadvantages
❖ Advantages!

❖ Easy to read like with WKT!
❖ Well structured XML format defines structure of geometry with sensible

nesting !
❖ Disadvantages!

❖ Very verbose, requires substantially more space to represent the same
geometry!

❖ Also suffers from floating point rounding!
❖ SQL Server implements only a subset of full standard Importing some

GML files may not be possible

<LineString xmlns=“http://www.opengis.net/gml">
 <posList>-6 4 3 -5 10 8</posList>
</LineString>

Inputting and Outputting GML

❖ Only one method for importing: GeomFromGml()!
❖ Must be the top-level geometry or geography type!

❖ To obtain GML from SQL Server: AsGml()6 -122.3</pos> </Point>';  
SELECT 

DECLARE @gml xml =  
'<Point xmlns="http://www.opengis.net/gml">  
 <pos>47.6 -122.3</pos>
</Point>';
!
SELECT 
 geography::GeomFromGml(@gml, 4269);

Inputting and Outputting GML

DECLARE @polygon geography =
 'POLYGON((-4 50, 2 50, 2 60, -4 60, -4 50))';
SELECT
 @polygon.AsGml();

<Polygon xmlns=“http://www.opengis.net/gml">
 <exterior>
 <LinearRing> 
 <posList>50 -4 50 2 60 2 60 -4 50 -4</posList>
 </LinearRing>
 </exterior>
</Polygon>

Dynamically Generate WKT

❖ May have data not already in WKT, WKB, or GML!

❖ Can use string manipulation to make WKT in SQL

Dynamically Generate WKT

❖ Although simple internal constructors could be easier for simple
cases. Book shows example of building up a LineString

.NET Console Application Demo
Forming Well-Known Text

