First-order Predicate Logic

INTRODUCTION

The language of propositional logic is obviously insufficient for more subtle reasoning. Here is an example:

"A prime number is divisible by no other number than 1 and itself, and the number ϵ is divisible by 2. Hence, there is a number which is not prime."

All we can express (of this reasoning) in propositional logic is a coarse skeleton:

 $\varphi \wedge \psi \longrightarrow \sigma$

In predicate logic we can express all the details:

$$(\forall x(Prime(x) \longrightarrow (\forall y (Divisible(x, y) \longrightarrow (y = 1 \lor y = x)))) \land Divisible(6, 2)) \longrightarrow (\exists z \neg Prime(z))$$

The power of predicate logic can be attributed to a supply of symbols for

1. Relations and Properties

e.g. "*Divisible*(*x*, *y*)" and "*Prime*(*x*)"

2. Quantifiers

 $"\forall x \ldots " \qquad "\exists z \ldots "$

SYNTAX

Some typical formulas in predicate logic:

 $\forall x \exists y(x = y^2 \longrightarrow y = 2x)$ ($\forall x(Prime(x) \longrightarrow (\forall y (Divisible(x, y) \longrightarrow (y = 1 \lor y = x)))) \land$ Divisible(6, 2)) $\longrightarrow (\exists z \neg Prime(z))$

Such **formulas** are meant to express that a certain object or some unspecified ditto or maybe all objects have a certain property or that two or more objects are related to each other in some way.

The **formulas** are built with the help of symbols from a rich Alphabet. (See below.)

THE ALPHABET

LOGICAL symbols

Variables (countably many) $x, y, z, x_0, y_0, z_0, \ldots$ representing arbitrary individuals.

Connectives \bot , \neg , \land , \lor , \rightarrow , \longleftrightarrow

Quantifiers \forall , \exists

Equality =

Auxiliary symbols (,), ,

NON-LOGICAL symbols

Constant symbols E.g. π , 0, 1, 2, Charles and c_i for an unspecified constant. These symbols are used to represent fixed individuals.

Predicate symbols are used to represent relations. E.g. we could write x < y and Prime(x) and Divisible(x, y). In these cases < , *Prime* and *Divisible* are predicate symbols. A predicate symbol for an unspecified relation is often written *P*.

Function symbols which represent functions. E.g. we could write x + y or plus(x, y) and mother(x). In these cases +, *plus*, *mother* are function symbols. A function symbol for unspecified function is often written f.

EXAMPLE 1 The marked symbols below are logical.

The unmarked are nonlogical.

 $\forall x \exists y(x = times(y, y) \rightarrow y = plus(x, x))$

 $(\forall x(Prime(x) \longrightarrow (\forall y(Divisible(x, y) \longrightarrow (y = 1 \lor y = x)))) \land$ Divisible(6, 2)) $\longrightarrow (\exists z \neg Prime(z))$

i Different non-logical symbols are used in different reasonings.

THE TERMS (represent individuals)

- 1. Every **constant** is a term.
- 2. Every variabel is a term.

3. If f is a *n*-ary function symbol and t_1, \ldots, t_n are terms, then $f(t_1, \ldots, t_n)$ is a (compound) term.

EXAMPLE 2 The marked strings are terms.

 $\forall \underline{x} \exists \underline{y}(\underline{x} = \underline{times}(\underline{y}, \underline{y}) \longrightarrow \underline{y} = \underline{plus}(\underline{x}, \underline{x}))$

 $(\forall \underline{x}(Prime(\underline{x}) \longrightarrow (\forall \underline{y} (Divisible(\underline{x}, \underline{y}) \longrightarrow (\underline{y} = \underline{1} \lor \underline{y} = \underline{x})))) \land Divisible(\underline{6}, \underline{2})) \longrightarrow (\exists \underline{z} \neg Prime(\underline{z}))$

THE FORMULAS

- 1. \perp is an atomic formula.
- 2. If t, u are terms, then t = u is an atomic formula.

3. If *P* is a *n*-ary predicate symbol and t_1, \ldots, t_n are terms, then $P(t_1, \ldots, t_n)$ is an atomic formula. Also *P* alone is an atomic formula in case *P* is 0-ary.

4. If φ is a formula, then $\neg \varphi$ is a formula.

5 If φ, ψ are formulas and $\Box \in \{ \land, \lor, \rightarrow, \leftrightarrow \}$, then $(\varphi \Box \psi)$ is a formula.

6 If φ is a formula and x is a variable, then $\forall x \varphi$ and $\exists x \varphi$ are formulas.

EXAMPLE 3 Formulas and binary tree-structure.

Every subtree corresponds to a subformula. In the leaves You find atomic formulas.

