

i^{in} order statistics algorithm runs in O(n). That is the selection of the i^{in} item can be done in O(n) running time.

MCM: Matrix A_i has dimensions p_{i-1} , p_i . m[i,j] is the minimum number of scalar multiplications needed to compute the matrix A_{i.j}. So

LCS: Let $X = \langle x1, x2, ..., xm \rangle$, we define the ith prefix of X, for i=0,...,m as Xi= $\langle x1, ..., xi \rangle$. Let $Y = \langle y1, ..., yn \rangle$ and $Z = \langle z1, ..., zk \rangle$ be any LCS of X and Y. Then Optimal substructure argument

Optimal BST: Let K=<k1,...,kn> be n distinct keys \ni k1<...<kn. We also must have n+1 dummy keys representing all the values not in K. <d0,...,dn> \ni d0 represents all values less than k1, d1 represents all values between k1 and k2, and dn represents all values greater than kn. Each ki has a probability pi and each di has a probability qi. Define: w(i,j) =

\mathbf{x}^{i} , \mathbf{x}^{i} and \mathbf{z}^{i} , \mathbf{z}^{i}	$\int q_{i-1}$	$if \ j = i - 1$		
$\sum_{l=i}^{i} p_l + \sum_{l=i-1}^{i} q_l \qquad e[i, j] = 1$	$\begin{cases} q_{i-1} \\ \min_{i \le k \le j} \{ e[i, k-1] + e[r+1, j] + w(i, j) \} \end{cases}$	if $i \leq j$		

Greedy Algorithm: Prove Optimal substructure, and Greedy choice property - (that any optimal solution may or must contain the greedy choice.)

1. Cast the optimization problem as one in which we make a choice and are left with one subproblem to solve.

2. Prove that there is always an optimal solution to the original problem that makes the greedy choice. \rightarrow Greedy choice is safe.

3. Demonstrate that, ..., what is left is a subproblem with the property that if we combine an optimal solution with the greedy choice we get an optimal solution.

Fractional Knapsack,	Huffman(C)	allocate a new node z	Insert(Q,z)	
Super increasing coin problem	n = length of C //C linked list	left[z]=x=extractMin[Q]	return extractMin(Q) //return the	
Huffman Encoding	Q=C //min priority queue	right[z]=y=extractMin[Q]	//root of the tree	
	for $i = 1$ to $n-1$	f[z]=f[x]+f[y]		
	T > 1 + 1 + 1 + 1 + 1 + 1 + 1			

Flow Networks: A flow network G = (V, E) is a directed graph in which each edge $(u,v) \in E$ has a nonnegative capacity $c(u,v) \ge 0$. Each vertice v is on a path from (s)Source to (t)Sink \rightarrow the graph is connected and $|E| \ge |V| - 1$. Flow is defined by $f(u,v) \le c(u,v)$ with the following properties: Capacity constraint above or $\sum_{u \in V} f(u,v) = 0$ for $v \in V - \{s,t\}$, Skew symmetry $\forall u, v \in V$, f(u,v) = -f(v,u), Flow conservation $\forall u \in V = \{s,t\} \sum_{v \in V} f(u,v) = 0$. Value of a flow f denoted $|f| = \sum_{v \in V} f(s,v)$. Implicit Sum notation

 $f(X,Y)=\Sigma_{x\in X} \sum_{y\in Y} f(x,y)$. Lemma 26.1: $\forall X,Y,Z \subseteq V$ with $X \cap Y=0$, $f(X \cup Y,Z)=f(X,Z)+f(Y,Z)$ and $f(Z,X \cup Y)=f(Z,X)+f(Z,Y)$. Residual networks are those nasty looking networks with back flow arrows instead of used/capacity numbers on the original edges. residual networks are defined as: $G_f = \{V, E_f\}$ where $E_f = \{(u,v) \in V \times V : c_f(u,v) > 0\}$. Augmenting Paths: p is a simple path from s to t in a residual network Gr. A flow is maximum if there does not exist any more augmenting paths. Max-Flow, Min-Cut: Given all cuts – see def. (S,T) where $\leq S$, t \in T, the cut with the minimum flow f(S,T) is the maximum flow. Ford-Fulkerson = O(E|f*|) where f* is the max flow.

Edmonds-Karp algorithm uses a depth first search to find the shortest path when adding augmenting paths to the residual network and it runs in O(VE²)

Classification problems: P (polynomial time solvable) NP (non-deterministic polynomial), NPC, NP-Hard

Proving NP: A language $L \in NP$ means that given a certificate we can verify it in polynomial time. So: Precisely define the certificate and the verification algorithm, show that the algorithm verifies in polynomial time and cannot be fooled.

Proving NP-Hard: Given a language L and every language $L' \in NPL' \leq L$ and possibly $L \notin NP$. Thus we must only prove that a known NP-hard problem or NP-complete problem reduces to this one in polynomial time.

Proving NP-Complete: Given a language L, prove that $L \in NP$ and prove that some known language L' $\in NCP$ reduces to this language. NOTE: the reduction may seem totally arbitrary! what you have to do is show that $(L'(x) \rightarrow yes) \Leftrightarrow (L(x) \rightarrow yes)$, that is find a polynomial time algorithm to transform L' into L. Don't worry about anything except that \Leftrightarrow condition! Not all instances of your problem will cover the NPC problem! Don't worry about it!

⇔ condition. Not an instances of your problem will cover the Ni e problem. Don't won'y about it.	For any graph $G=(V,E)$ and subset V'I V, the following statements are
LIST OF NPC Problems and sketches of the reductions: Circuit-Sat : original problem we don't do this one! Sat (Boolean formula sat) : label the wires and create formulas for each gate like $xn \land (x3 \Leftrightarrow x1 \land x2) \land \land (x7 \Leftrightarrow x8 \lor x9)$	equivalent: (1) V is a vertex cover for G. (2) V-V is an independent set for G. (3) V-V is a clique in the complement of G^{c} of G where $G^{c}=(V,E^{c})$ and $E^{c}=\{\{u,v\}:u,v\}$ V and $\{u,v\}$? E}
3 - CNE - SAT	

Clique : A complete subgraph of G – thus a K-Clique is a complete subgraph of G with k=|V|. We reduce by creating a graph that has 3 vertice sets (same number as clauses) and put in an edge from each vertex to each vertex in other clauses that don't contradict it. If there is an n-clique where n is the number of clauses, it is satisfiable. Draw and convince yourself you should be able to reproduce it.

Vertex-Cover : If there is a k-clique in G, then there is a vertex cover of size n-k in the complement of G.

Subset-Sum : Evil and we don't have to do it!

Ham-Cycle: Evil and we don't have to do it!

TSP(Traveling Salesperson): TSP = $\{\langle G, c, k \rangle : G = (V, E) \text{ is a complete graph, } c \text{ is a function from } V \times V \rightarrow Z, k \in Z, and G \text{ has a traveling-salesman tour with cost at most } k \}$. The reduction is simple: Take an instance of ham-cycle G(V,E) and map it to a complete graph G'(V',E') where if $(u,v) \in E$, c(u,v)=0, otherwise c(u,v)=1. Is there a TSP(G',c,0)?

Connected graph :An <u>undirected graph</u> that has a <u>path</u> between every pair of <u>vertices</u>. **Strongly connected** graph: A <u>directed graph</u> that has a <u>path</u> from each <u>vertex</u> to every other vertex. **Degree** of a <u>vertex</u>: the number of <u>edges</u> connected to it. **Degree** of a <u>graph</u>: the maximum degree of any vertex **Residual network** : Instead of using flow/capacity flow is denoted by an arrow in the opposite direction and capacity is reduced.

BFS: Given a Graph <i>G</i> and a 1. Color all the nodes whi 2. Distance for all nodes <i>u</i> 3. Parent of each node <i>u</i> to 4. Color <i>s</i> grey 5. Enqueue $s \rightarrow Q$ 6. while <i>Q</i> is not empty 7. <i>u</i> =dequeue(<i>Q</i>) 8. find each white neighbor 9. $d[v]=d[u]+1$ 10. $p[v]=u$ 11. engueue(v) 12. color[u]=black Topological Sort(G) 1. call DFS(G) to compute 2. as each vertex is finished	te u to be $d[u]=infb$ be $p[u]=nilfor v of u dothe the finish time$	inity em inity em an cov rea in v Th DA the dir to	nempty, <u>prope</u> , o two sets such pty sets X, Y, undirected graver is a set of v ichable from S which adjacent e Predecessor AG G=(V,E) is ordering. (If t <i>ected graph G</i> u. Stat 1) 2) ertex v 3)	r subset of vertice that no <u>edge</u> cor a function f: X→ ph G=(V,E) is a s vertices that cover S. The graph creat t verticies are visi subgraph forms a is a linear ordering he graph is not ac =(V,E) is a maxim- rongly-Connecteda call DFS(G) compute G ^T	es of a generative set of a generative set of a generative set of a generative set of the edge ted from ted, but the edge ted from ted, but the depth-f g of all i eyclic, the imal set of the composition of the set of the composition of the set of the se	raph. Biparti ertices in the s ijection if it is ' \subseteq V such that es. Running the n a BFS has no this will not c first forest co ts vertices such of vertices (C) contents(G) the main loop the main loop	ite graj same s s one-to at if (u, time fo no cycl- change ompose that orderir CIV su s times p of D	ph : An <u>und</u> set. Trees : A to one (inject, $v) \in E$, there or BFS is O les. DFS may the effective ed of severa t if G conta ng is possible uch that "u, v f[u] for eace	(u,v) > 0. Cuts (g inected graph where zero based! Bij tive) and onto (su $u \in V$, or $v \in V'$ or (V+E) BFS finds v result in different reness of the resul l depth-first trees. ins an edge (u,v) , e.) A strongly cont $\hat{I} C$, we have both where the vertices in context.	ere vertices ca dection : Given rjective). Ver r both. That is only those ve at trees based ts. Running T A topologica then u appear mected comp h a path from	in be divided in two non- rtex Cover: of a vertex rrtices that are on the order Yime $Q(V+E)$. al sort of a rs before v in <i>onent of a</i>
3. Return the linked list of $(1) O(V+E) (2-3) O(1) = O(V)$			4)	output the ver strongly conne			he dept	th-first fores	st formed in line 3	as separate	
	(12)	MST - Kruskal(G,)	subligity conin		inponents.	MST-	– Prims(G(V F	$(e \in E), r) // graph$	weightstart]
DFS(G)	CI	1. A = ? //A is the s	,	fine the MST		<i>O</i> (1)		$\operatorname{ach} u \in V$,,,,(c ⊂ ± ,,, ,,,, g, up4	0	(V)
 for each vertex u Î V[do color[u]=white 	G	2. for each vertex	-			O(V)		$ey[u] = \infty$			<i>O</i> (1)
3) $p[u]=nil$		3. do $Make-Se$					-	[u] = Nil	1	0	O(1)
4) time=0		-		sing order by weight		$O(E \log E)$ O(V + E) = (V)		[r] = 0 // decrea	e key nin priorityqueue		(1) (1)
5) for each vertex $u \hat{I} V[$	G]		$(v) \in E$, taken in no $(u) \neq FindSet(v)$	ondecreasing order by v	veight	$O(V+E)\mathbf{a}(V)$		ileQ!= ?	ini priorit queue		(V)
6) do if color[u]=white7) then DFS_Visit(u)				(u, v)safe edge in MS	Г			= Extract-Mi	n(Q)		$O(\log V)$
DFS_Visit(u)			(u, v)//Union t he set				8. for	r eachv∈ Adj[ı	ι]	2	$E \operatorname{times} = O(E)$
1) colorp[u]=gray		9. return A				<i>O</i> (1)		$\text{if } v \in Q \text{ and } w$	(u,v) < key[v]		<i>O</i> (1)
2) time++			vhere $a(V) = O(\log g)$ g function defined	$V = O(\log E)$ (becaus	se $E < V^2$)		10.	p[v] = u			O(1)
 3) discover[u]=time 4) for each v Î Adj[u] //ex 	nlora adres		-	or using the above log	ic	$O(E \log V)$	11. Runn	key[v] = w($ingTim = O(E)$	u,v) //decreasekeyop	eration	$O(\log V)$
5) do if color[v]=white	cpiore euges							ů (tract-Min in O(lo	g w) and Dec	ransa Kay in
6) then $p[v]=u$		Howeveriv							V log V). Shorte		
7) DFS_Visit(v)		gle-Source(G,s)	represent	ation is used for a	all these	algorithms.		Bellman - For		··	
8) color[u]=black9) time++	1. " $v\hat{I}V(G)$			ws: negative weig					ialize - Single	Source (G,s)	
10) finish[u]=tim e	2. d[v]=8 3. p[v]=NI	n	negative	cycles on the sho The running	rtest pat	h.			i = 1 to $ V - 1for each edge ($	$(v) \in F$	O(V) O(E)
,	4. $d[s]=0$	O(V)			Rela	x(u,v,w)		3. 4 .	Rel ax (u, v, w		O(L) O(1)
DAG-Shortest Path(G,w,s)				time for		v]>d[u]+w(u,			each edge $(u,v) \in$		O(E)
1. Topologically sort the ve		O(V+	E)	Dijkstra's		$u^{]}=d[u]+w(u, v)$,v)	6. 7	$\mathbf{i} \mathbf{f} \ d[v] > d[u] + w(u)$		<i>O</i> (1)
2. Initialize-Single-Source(. ,	O(V) order O(V)		algorithm is quite	O(1)	/]=u		7. 8. reti	return fal: Irn true	se	O(1)
3. For each vertex u, taken i 4. for each vertex v î Adj			agg analysis	complex	0(1)			Running Tin	ie		O(VE)
5. $Relax(u,v,w)$	~]	O(1)	ugg unu jono		1		~	~	plemented. if we	use an	ser(u) = O(1)
Running Time: O(V+E)									tices we have \rightarrow		Key(u) = O(1)
	.1 6	1		Thus the run	ining ti	100 me 1s $O(v + 1)$	-E)=U(n be reduced to		Min(u) = O(V)
O(VlogV+E) by using a Fibona	acci neap from c	riv wand a $I^{(i)}$	matrix where	r , (0 ;	f; _ ; N	Notice that th	10	Dijkstr¢G,	,		
All-Pairs Shortest Paths: Giv	en a weignt mat		matrix where	$L^{(0)} = \begin{bmatrix} I_{ij}^{(0)} \end{bmatrix} = \begin{cases} 0 & 1 \\ 0 & 1 \end{cases}$	$i_i = j_i$	Notice that th		1. In	i ti al ze- Si ngl	e-Source(G	(s) O(V)
				Ľ.				2 . S =	=?		<i>O</i> (1)
recursive formula $l_{ij}^{(m)} = \min(l_{ik}^{(m)})$	<i>, , ,</i>							3 . Bu	ildQfromV		O(V)
1 to n leading us to believe th						path from eve	ery	4. Wh	ile Q≠?		O(V)
vertex to itself if there are no no Extend-Shortest-Paths (L,w)	egative weight c			hortest-Paths <i>i</i> ti		find the shore	rtest	5.	u=ExtractMin	Q)	O(V)
n = # of rows in L	O(1)			f length <i>i</i> . To ma				6.	$S = S \cup \{u\}$		shortest
int L'[n][n] is an n x n matrix	O(1)	1		v -1 times. Thus		0	ime	7.	for each ver	$tex v \in Adf$	i] $O(E)$
for i=1 to n	O(n)	is going to	o be $O(V^2)$. W	Ve can improve th	is by the	e following		8.	Rel $ax(u, t)$	v, w)	<i>O</i> (1)
for $j=1$ to n $l_{ij} = 8$	O(n) O(1)									(1)	()
for $k=1$ to n	O(n)	observatio	on: This algor	ithm is an opera	tion (ca	ll it ^o) on n	natric	es that is ass	ociative. We hav		,
$l_{ij} = min(l_{ij}, l_{ik} + w_{kj})$	O(1)	Floyd-Wa	where $d_{i}^{(k)}$ is	hm for All Pairs S s the shortest path	from i	to i where the	curssive he inter	e characteriz	tices come from	$L^{(2)} = L$	$\mathcal{L}^{(1)} \circ w = w^2$
return L'	O(1)	41	l,,k). Again	this algorithm re	quires u	s to calculate	$d_{ij}^{(k-1)}$	⁾ before we c	calculate $d_{ij}^{(k)}$, but	$L^{(3)} = L$	$(2) \circ w = w^3$
Total Running Time	$O(n^3)=O(V^3)$								itions we expect t	he	running
Floyd-Warshall(w)		time to be C	(n ³) Note: w	is the adjacency	matrix	Note: Droppi	ing the	superscript	s allows us to dim	 inish the snac	e requirement
n=# rows in w				t disrupting the al	gorithm	To construc	ct the a	actual shorte	st	-	-
$\mathbf{D}^{(0)} = \mathbf{w}$. ,		paths, we can	use the	p's below.			W_{ij}		if $k = 0$
for $k = 1$ to n		ord-Fulkerson-M							$a_{ij}^{(k)} = \lim_{k \to \infty} d^{(k-1)}$	$d^{(k-1)} + d^{(k-1)} + d^{(k-1)}$	(-1) if $k > 1$
for $i = 1$ to n for $j = 1$ to n		nitialize flow to		Г г	(L_1)	(L_1)	(1. 1	1) (1. 1)	linnuij	, ik ^{ru} kj	,
$d_{ij}^{k} = \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} +$	d ((x-1))	vhile \$p, an augr ugment flow f a	• •	(k)	$\mathbf{D}_{ii}^{(n-1)}$	$\text{If } d_{ii}^{(\kappa-1)} \leq$	$\leq d_{ik}^{\kappa-1}$	$d_{ki}^{(\kappa-1)}$	$()$ $\int NIL$	if $i = i$ or v	<i>v</i> = ∞
return D ⁽ⁿ⁾	- 34	eturn f	ong p		(k-1)	(k-1)	_1(k-1	1)(k-1)	$\boldsymbol{d}_{ij}^{(k)} = \begin{cases} w_{ij} \\ \min(\boldsymbol{d}_{ij}^{(k-1)}) \\ \boldsymbol{p}_{ij}^{(0)} = \begin{cases} NIL \\ i \end{cases}$;f ; _ ;	y
Domain a Time $O(n^3) = O(n^3)$					U ; . '	$\prod a_{ii} > a_{ii}$	a_{ik}	$+a_{ki}$	ľ	n <i>i ≠ j</i> and	$W_{ij} \leq \infty$
Running Time $O(n^3)=O(V^3)$	L			ų	ĸj	ij	in	Ng	-		