
Architecture:Processor Architecture
Instruction Set Architectures (ISA):Stack, Accumulator, Memory-memory, Register-memory, Register-register Instruction level parallelism

WAR - name/anti-dependence
WAW- name/output dependence does not exist in
classic 5-stage pipeline
Name dependencies can be fixed using register
renaming
RAW - true data dependence See table for resolution
Scalar pipeline – Single issue per clock cycle
Superscalar pipeline – Multiple instructions issued per
clock cycle à Tomasulo pipeline
Superpipelining – Deeper pipeline that decomposes
memory accesses from 5à8 stages
VLIW (Very Long Instruction Word 64-bit)
Performance enhancement techniques : Branch
predictions, Prefetching, Out-of-order executions
Memory Hierarchies
Locality: Temporal, Spatial
Principle of exclusion: (Cache coherence protocol) says

that one processor has exclusive access to a block of memory in its cache (May also refer to the principle of one process having exclusive access to a block).
The four fundamental issues for data in cache blocks: Placing, Replacing, Finding, Writing.
Direct Mapped: Block Address = (Byte Address) DIV (Bytes Per Block) , slot# = Block Addr MOD # of Slots
Set-Associative: Set = (Block Address) modulo (Number of sets in the cache), search each set
Fully Associative: Place anywhere, LRU usually, search whole cache (to slow for L1 cache)
KEY: as you increase set associatively the miss rate goes down, however the hit time goes up. Also size
of the cache and n are not independent when determining performance of the cache.
While caches, TLBs, and Virtual memory may initially look very different, they rely on the same two principles of
locality and can be understood by looking at how they deal with four questions: Where can a block be placed?
 One place (Direct Mapped), a few places (set associative), or any place (fully associative). How is a block found?
 There are four methods: Indexing (as in a direct mapped cache). limited search (as in a set-associative cache),
Full Search (as in a fully associative cache), and a separate lookup table. What block is replaced on miss?
Typically, either the LRU (least recently used) or a random block. How are writes handled? Each level in the
hierarchy can use either WriteThrough or WriteBack.
Cache coherence : Multiple caches and coherence protocols. Snooping Protocol: Low cost, and every processor has
a mechanism to monitor a common bus – problem: it doesn’t scale well – used on 2/4 processor PIII/P4 XEONs.
Directory protocols have a centralized repository of information about what blocks are in use, and whether they are
shared, or exclusive. This information is sometimes distributed to different processors, but blocks are assigned to
repositories much like they are assigned to sets in a cache.
I/O: Basic Bus protocols : arbitration: Daisy chain: requests are sent down a chain from highest priority to lowest priority.
Starvation is possibly for the lowest priority, but it is simple! Centralized: You have a central arbitrator that requests are
queued to and it determines which is first. (used in CPU – memory busses) Distributed arbitration by self selection:
Each device places a code identifying itself on the bus. All devices must be able to participate in the arbitration process.
Distributed arbitration by collision detection: Ethernet uses this. Buss protocols are made up of a specification of a
sequence of events and timing requirements in transferring information.
I/O methods : Programmed I/O (The program busy waits for the device to respond be ready for a request),
Polling (The CPU or OS occasionally polls the devices to see if they have responded or are ready for a
request), Interrupts (The devices themselves interrupt the processor thus relieving the CPU from wasting
time checking on the status of the devices), DMA (A separate controller moves data into specific memory
locations and interrupts the processor when the requested block or blocks have been placed in the memory
location requested). The I/O bus is usually connected to the memory bus so usually we communicate with
peripherals using memory mapped I/O. IOPs: Input/output operations per second.
RAID 0: striping blocks 1: Disk Mirroring 2: Memory style ECC organization 3: bit-interleaved parity organization
Down side is every disk must be involved in a read/write. 4: Block-interleaved parity organization: read modify
Write problem exists for parity disk. 5: Block-interleaved distributed parity solves the overuse of the parity disk.
Operating Systems
Types of systems : Batch, Multi-programmed, Time-sharing, Personal-Computer Systems , Parallel, Distributed,
Real-Time systems .
System Calls: require context switch, used for I/O operations and other protected operations.
Process Management Process Control Blockà
Process contains the code, PC (program counter), Processor’s
registers, process stack (temporary data such as methods
parameters, return addresses and local variables as well as a
data section which contains global variables.
Process scheduling: Ready Queue holds all processes waiting to execute. Device or I/O Queue holds processes waiting for a device to complete an operation
like a disk access. Long-Term Scheduler: selects which jobs to load into memory for execution. It controls the amount of multiprogramming. Short-Term or CPU
Scheduler: selects from among process that are ready to execute, and allocated the CPU to one of them.
Cooperating processes: Bounded/Unbounded Shared Buffer between Producer and Consumer. IPC using message passing. Direct (duh) Indirect: processes
communicate via ports/mailboxes that they share. Who receives if multiple receivers? Depends on the scheme used. A mailbox may have an owner or it may be
owned by the OS. If the mailbox has an owner only the owner can receive messages and user processes can only send messages. When the owner terminates
the mailbox disappears too. Synchronization: blocking à synchronous, non-blocking à asynchronous. When both receiver and sender are blocking, we have a
rendezvous . Messages are queued. If the queue is zero length, the sender must block , this is often called a no-buffering system. The same happens with a
bounded queue that is full. Bounded or infinite buffering systems are called automatic buffering.
RPC: in contrast to IPC facility, the messages exchanged for RPC are well structured and are thus no longer just packets of data. A Stub is provided on the client
side and when invoked the RPC system invokes the appropriate remote procedure. Parameters are marshalled by packaging the parameters into a form which
may be transmitted over a network. A similar stub on the server side receives this message and invokes the procedure on the server. If necessary return values
are passed back to the client using the same technique. Binding to a port can be either static or dynamic. Dynamic port binding provides a rendezvous (also called
a matchmaker) daemon on a fixed RPC port. RMI works similarly except the server side stub is called skeleton.
Threads: A thread is a flow of control within a process. Benefits include (Responsiveness, resource sharing, economy over proc ess creation, utilization of
multiprocessor architectures). Types user (implemented in a library above the kernel and the kernel is unaware of the scheduling issues etc. The can be created
fast and are easy to manage, but if one thread makes a blocking system call, all the threads will be blocked.) Kernel (The kernel creates, schedules and manages

Technique Reduces
Forwarding and bypassing Potential data hazard stalls
Delayed branches and simple branch
scheduling

Control hazard stalls

Basic dynamic scheduling (scoreboarding) Data hazard stalls from true dependence
Dynamic scheduling with renaming Data hazard stalls from antidependences and output

dependencies
Dynamic branch prediction Control stalls
Issuing multiple instructions per cycle Ideal CPI
Speculation Data hazard and control hazard
Dynamic memory disambiguation Data hazard stalls with memory
Loop unrolling Control hazard stalls
Basic compiler pipeline scheduling Data hazard stalls
Basic compiler pipeline scheduling Data hazard stalls
Compiler dependence analysis Ideal CPI, data hazard stalls
Software pipelining, trace scheduling Ideal CPI, data hazard stalls
Compiler speculation Ideal CPI, data hazard stalls

Pointer Process state (New, running, waiting, ready terminated)

Memory-management information: base and limit registers, page table or
List of open files

Process number
Program counter: address of next instruction
CPU Registers
CPU-scheduling information: priority ,pointers to queues, parameters

//Correct Cr Region
Do {
//Entry section
 Flag[i]=true;
 Turn = j;
 While (flag[j] &&
 turn== j);
 //Critical section:code
//Exit Section
 Flag[i]=false
//remainder section

Bakery Algorithm
do {
 choosing[i] = true;
 number[i] = max(number[0],
number[1],...,number[n-1]) + 1
 choosing[i] = false;
 for (j=0; j<n; j++) {
 while(choosing[j]);
 while((number[j]!=0) &&
((number[j],j)<(number[i],i)));
 }
 //critical section
 number[i] = 0;
 //remainder section
 } while(1);

the threads. Since they are created by system calls they are a little slower, but the kernel can schedule other threads even if one thread performs a blocking
system call, and the kernel can schedule different threads on different processors in a multiprocessor system.) Mapping User threads to Kernel threads: Many-
to-one (this is essentially user threads, and you have the blocking problem – precludes the use of multiple processors – true concurrency is not achieved) One-to-
one (Much higher overhead, but true concurrency is achieved, the user must be careful not to create to many threads and in some cases the number of threads is
restricted – used by NT/2000/OS/2) Many-to-many (Multiplexes many user threads with many kernel threads – it does not suffer from either of the problems of the
other two types.) Fork calls may either duplicate the thread that called it or all the threads (depending on the fork used), but exec works the same, replacing all
threads with the processed called. Signal Handling: When a <ctrl+c> signal is sent to a processes which thread handles it? The kernel has a default handler, but
this may be overridden by a user handler. Synchronous signals need to be sent to the thread that generated it, but asynchronous signals are less clear: 1. Deliver
it to the tread to which it applies (e.g. I/O signal) 2. Deliver the signal to every thread in the process (e.g. ctrl+c) 3. Deliver the signal to certain threads in the
process. 4. Assign a specific thread to receive all signals for a process. Thread Pools : Usually faster to service a request, limits the number of threads that exist at
any one point. Solaris 2 Threads: Two types bound and unbounded – bound thread have a 1-to-1 relationship with a light-weight thread (LWP). Unbounded
threads is not permanently attached to a LWP and more than one one user-level thread can be attached to an LWP. Many-to-many model. LWPs also have a
many-to-many model with processes.
CPU SCHEDULING: scheduling criteria(CPU utilization: busy as possible, ideally 40-90%, throughput: Number of processes completed in unit time,
turnaround time: the interval from the time of submission of a process to the time of completion including w ait time and executing. Wait time: waiting in the ready
queue and i/o queue. Response time: the time from the submission of a request until the first response is produced – generally limited by the speed of the output
device.
Scheduling algorithms: FCFS - Simple but often times bad average wait time which we call the convoy effect where one process dominates the CPU and other
line up behind it. Shortest Job First (SJF) should be called shortest next CPU burst first is provably optimal in that it gives the minimum average waiting time for a
given set of processes. However, it can’t be implemented at the level of short-term CPU scheduling because we don’t know how long the next CPU burst will be!
Used for long-term scheduling. It can be approximated using a exponential average: pn+1=at+(1-a)pn where t is the last value and pn+1 is the new prediction based
on the last prediction. May be either preemptive (sometimes called shortest-remaining time first) or non-preemptive. SJF is a specific type of Priority Scheduling:
Can use an internal priority like SJF does or some external priority assigned to a process. It can be either preemptive or non-preemptive. A major problem with
priority scheduling is indefinite blocking or starvation. A solution is aging where over time a process gets a higher and higher priority. Round-Robin Scheduling: is
similar to FCFS, but preemption is added to switch between processes. Still has long average wait times. Time slice should be large with respect to the context
switch time, performance depend on time slice size as well small=processor sharing – large = FCFS queue type. Multi-level Queues: Have two ready queues and
a scheduling scheme for the queues (e.g. interactive is RR and background is FCFS) and then a priority scheduling algorithm to determine which queue to take
jobs from. Subtype: Multilevel feedback queues are characterized by: 1) The number of queues 2) The scheduling algorithm for each queue 3) The method used to
determine when to upgrade a process to a higher priority queue 4) Method used to determine when to demote a process 5) Method used to determine which
queue a process will enter when that process needs service. Little’s formula n=?*W where ? is the average arrival rate of new process and W is the time we
expect a process to wait.
PROCESS SYNCHRONIZATION The critical-section (CS) problem(Sections: Entry, critical, exit and remainder): Mutual Exclusion (If Pi is executing in its
critical section, then no other process can be executing in their critical section problem.) Progress (If no process Pi is executing in its
critical section and some processes wish to enter their critical sections, then only those processes that are not executing in their
remainder section can participate in the decision on which will enter its critical section next, and this selection cannot be postponed
indefinitely.) Bounded Waiting(There exists a bound on the number of times that other processes are allowed to enter their critical
sections after a process has made a request to enter its critical section and before that request is granted.) Hardware
testandtest(sets to true and returns value before set. Testandset(lock) if the CS is not locked go in and lock it, then unlock it in the exit
code. The swap works very similar we have key=true, swap(lock,key) if key is false, then we “no longer have our key, it’s in the door
and we have exclusive access to the CS, when we leave we take our key and set the lock=false (not occupied). Semaphores: typedef
struct{int value; struct process *L;} semaphore; semaphore S; NOTE L has a pointer to another process. So that we can use L as a
queue of some sort. The following is your typical counting semaphore. Void wait(semaphore S) { S.value--; if(S.value<0) { add this process to S.L; block();}} Void
signal(semaphore S) {S.value++; if(S.value<=0) {remove a process from S.L; wakeup(P);}} Deadlocks: happen when two process are waiting (via semaphore) to
access a resource that another process is holding. Necessary conditions : Mutual Exclusion, Hold and wait, No preemption, Circular wait. Prevention by
devising a protocol that breaks one of the necessary conditions: ME: Breaking ME is not reasonable because some resources can not be shared. H&W: a process
must request all need resources before it executes or must release all resources before requesting additional ones. This may cause starvation! NP: Allowing
preemption works well for some resources like CPU that can have their state saved and restored quickly, but won’t work at all for things like printers. CW: We
could define a 1-to1 mapping of resources to natural numbers and allow processes to request only resources with higher
numbers than those it holds. This hierarchy will not allow deadlock, because it breaks Circular wait. NOTE This may cause low
utilization of resources. Avoidance : Deadlock avoidance algorithm dynamically examines the resource-allocation state to ensure
that a circular wait condition can never exist. The system is in a safe state if there exists an ordering of the processes such that
the requests for resources can be satisfied. We deny requests that lead to unsafe states. Bankers/Safty Algorithm: 1. Let Work
and Finish be vectors of length m and n respectively (m- number of resource types, n- is the number of processes). Initialize
Work:=Available and Finish[i]=false. 2. Find an i such that both finish[i]=false and Need[i]<=work. If no such I exists, go to step 4.
 3. Work:=Work + Allocation[i] and Finish[i]:=true; goto step 2. 4. If Finish[i]=true for all I, then the system is in a safe state.
Resource Request Alg.: Let Requesti be the request vector for process Pi. If Requesti[j]=k, then process Pi wants k instances of
resource type Rj. To grant the request: 1. If Requesti<=Needi, go to step 2. else, raise an error because we exceeded max claim.
2. If Requesti<=Available go to 3, else Pi must wait since the resources are not available. 3. Pretend to allocate the resources and check to see if it results in a
safe state. DEADLOCK Detection: 1. [bankers +] If Allocationi<>0, Finish[i]=false, else Finish[i]=true. 2. Replace need[i] with request. 3. [bankers] 4. If There
exists finish[i]=false, process i is deadlocked. Networking
Connection oriented (ATM) and Connectionless Services (TCP) TCP/IP Model = App/TCP/IP/Host-to-Network(Datalink+Physical)
Network Layer 0[Net7][Host24]A,10[Net14][Host16]B,110[21Net][8Host]C,1110[Multicast]D,1111[Reserved]E
Network Layer Design issues: Works, Simple, Clear Standardized choices, Exploit Modularity through layers,Expect heterogeneity, Avoid dynamic parameters,
Think about scalability, Performance/Cost. Routing Algorithms OSPF is a breadth first search using reliable flooding and Dijkstra’s Algorithm. RIP uses the link
state algorithm in where global information is shared with neighbors. Count to infinity problem and routing loops possible.
CRC: Divide generator polynomial into data using XOR instead of subtraction.
Remainder à error. Bit Stuffing: remove 0 after 5 1’s because 01111110 is
a special tag. Congestion Control Algorithms
IPv6 128 Bit address space, Minimum Header is only twice as long as IPv4
Provides Stateless Autoconfiguration (prefix + Ethernet Address)
 The Network Layer in ATM networks:
 ATM Performance issues: Fixed length cells cause overhead large
 Overhead for short packets. Small (53 byte) cells give the ability to
 control delay and especially to control its variation with time(jitter), which can be an
 important factor for some applications. Since most queues have to wait until a complete packet arrives before you
 send out another one, small packets also have the advantage of utilizing the link better – less time is spent waiting
 for that big packet, and subsequent small packets are pipelined.

Speedup =
ExecTimeEnanced/ExecTimeWithoutEnhanced
Miss penalty = Hit time + retrieval time + [write time]

Step Confirmed Tentative
1 (A,0,-) (C,2,C),(B,3,B),(D,5,D)
2 (A,0,-),(C,2,C) (B,3,B),(D,4,C),(F,3,C)
3 (A,0,-),(C,2,C),(B,3,B) (D,4,C),(F,3,C),(E,7,B)
4 (A,0,-),(C,2,C),(B,3,B),(F,3,C) (D,4,C),(E,5,C)
5 (A,0,-),(C,2,C),(B,3,B),(F,3,C),(D,4,C) (E,5,C)
6 (A,0,-),(C,2,C),(B,3,B),(F,3,C),(D,4,C),(E,5,C) None
Destination Next Hop Cost
A - 0

Stored
at Node A A B C D E F G
A 0 1 1 inf 1 1 inf
B 1 0 1 inf inf inf inf
C 1 1 0 1 inf inf inf

Distance to reach NodeDestination Cost Next Hop
B 1 B
C 1 C

() 







+−

==

enhanced

enhanced
enhanced

new

old
overall

Speedup
Frac

Frac
ExecTime

ExecTime
Speedup

1

1

