Attachment 'fermatlittle.tex'
Download 1 \documentclass[]{article}
2 \usepackage{amsmath}%
3 \setcounter{MaxMatrixCols}{30}%
4 \usepackage{amsfonts}%
5 \usepackage{amssymb}%
6 \usepackage{graphicx}
7 \usepackage{geometry}
8 \newtheorem{theorem}{Theorem}
9 \newtheorem{acknowledgement}[theorem]{Acknowledgement}
10 \newtheorem{algorithm}[theorem]{Algorithm}
11 \newtheorem{axiom}[theorem]{Axiom}
12 \newtheorem{case}[theorem]{Case}
13 \newtheorem{claim}[theorem]{Claim}
14 \newtheorem{conclusion}[theorem]{Conclusion}
15 \newtheorem{condition}[theorem]{Condition}
16 \newtheorem{conjecture}[theorem]{Conjecture}
17 \newtheorem{corollary}[theorem]{Corollary}
18 \newtheorem{criterion}[theorem]{Criterion}
19 \newtheorem{definition}[theorem]{Definition}
20 \newtheorem{example}[theorem]{Example}
21 \newtheorem{exercise}[theorem]{Exercise}
22 \newtheorem{lemma}[theorem]{Lemma}
23 \newtheorem{notation}[theorem]{Notation}
24 \newtheorem{problem}[theorem]{Problem}
25 \newtheorem{proposition}[theorem]{Proposition}
26 \newtheorem{remark}[theorem]{Remark}
27 \newtheorem{solution}[theorem]{Solution}
28 \newtheorem{summary}[theorem]{Summary}
29 \newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
30 \geometry{left=0.5in,right=0.5in,top=0.5in,bottom=0.5in}
31
32 \title{Fermat's Little Theorem}
33 \author{Dr. Scot Anderson}
34
35 \begin{document}
36
37 \maketitle
38
39 \begin{abstract}
40
41 \end{abstract}
42
43 \begin{theorem}
44 [Fermat's Little Theorem]Let $p$ be a prime and $a\in Z^{+}$ such that
45 $a\operatorname{mod}p\neq0$. Then
46 \begin{equation}
47 a^{p-1}\equiv1\operatorname{mod}p
48 \end{equation}
49
50 \end{theorem}
51
52 \begin{proof}
53 Consider $Z_{p}=\left\{ 0,1,...,p-1\right\} $, we know that multiplying each
54 element of $Z_{p}$ by $a$ modulo $p$ just gives us $Z_{p}$ in some order.
55 Since $0\times a\operatorname{mod}p=0$ we have the last $p-1$ numbers of
56 $Z_{p}$ multiplied by $a$ as:%
57 \begin{align}
58 a\times Z_{p}\backslash\left\{ 0\right\} & =\left\{ a,2a,3a,...,\left(
59 p-1\right) a\right\} \nonumber\\
60 & \equiv\left\{ a\operatorname{mod}p,2a\operatorname{mod}p,...,\left(
61 p-1\right) a\operatorname{mod}p\right\}
62 \end{align}
63 If we multiply all the numbers in the set we have
64 \begin{align}
65 a\times2a\times3a\times...\times\left( p-1\right) a & =a^{p-1}\left(
66 1\times2\times...\times\left( p-1\right) \right) \nonumber\\
67 & =a^{p-1}\left( p-1\right) !
68 \end{align}
69 and
70 \begin{equation}
71 a^{p-1}\left( p-1\right) !\equiv a\operatorname{mod}p\times
72 2a\operatorname{mod}p\times...\times\left( p-1\right) a\operatorname{mod}p
73 \label{eq:1}%
74 \end{equation}
75 Because we know that all the terms in (\ref{eq:1}) map to some unique element
76 in $Z_{p}$ not $0$ we have the following%
77 \begin{equation}
78 a^{p-1}\left( p-1\right) !\equiv\left( 1\times2\times...\times\left(
79 p-1\right) \right) \operatorname{mod}p
80 \end{equation}
81 and
82 \begin{equation}
83 a^{p-1}\left( p-1\right) !\equiv\left( p-1\right) !\operatorname{mod}p
84 \label{eq:2}%
85 \end{equation}
86 Since $\left( p-1\right) $ is relatively prime to $p$ (because $p$ is prime)
87 we can divide out $\left( p-1\right) !$ from each side of (\ref{eq:2}) to
88 get the result:%
89 \[
90 a^{p-1}\equiv1\operatorname{mod}p
91 \]
92
93 \end{proof}
94
95 \begin{theorem}
96 An alternate form of Fermat's Little theorem: Let $p$ be prime and $a\in
97 Z^{+}$ such that $a\operatorname{mod}p\neq0$. Then%
98 \[
99 a^{p}=a\operatorname{mod}p
100 \]
101
102 \end{theorem}
103
104 \begin{definition}
105 Let $n\in Z^{+}$ then we define the totient function $\phi\left( n\right) $
106 is defined to be the number of positive integers less than $n$ that are
107 relatively prime to $n$. That is
108 \begin{equation}
109 \phi\left( n\right) =\left\{ x:x\in Z^{+},x<n,\gcd\left( x,n\right)
110 =1\right\}
111 \end{equation}
112
113 \end{definition}
114
115 \begin{lemma}
116 Let $n$ be a prime number. Then%
117 \begin{equation}
118 \phi\left( n\right) =n-1
119 \end{equation}
120
121 \end{lemma}
122
123 \begin{theorem}
124 Given a composit number $n=p\times q$ where $p,q$ are prime then
125 \begin{equation}
126 \phi\left( n\right) =\phi\left( p_{1}\right) \times\phi\left(
127 p_{2}\right)
128 \end{equation}
129
130 \end{theorem}
131
132 \begin{proof}
133 Consider that the set of residues in $Z_{n}$ is $\left\{
134 0,1,...,pq-1\right\} $. Now the residues that are not relatively prime to $p$
135 are
136 \begin{equation}
137 \left\{ p,2p,...,\left( q-1\right) p\right\} \label{eq:3}%
138 \end{equation}
139 and the residues that are not relatively prime to $q$ are
140 \begin{equation}
141 \left\{ q,2q,...,\left( p-1\right) q\right\} \label{eq:4}%
142 \end{equation}
143 Clearly the size of the two sets of residues not relatively prime to $n$ are
144 $\left( p-1\right) $ and $\left( q-1\right) $ plus the $0$ element. So we
145 have
146 \begin{align}
147 \phi\left( n\right) & =pq-\left[ \left( p-1\right) +\left( q-1\right)
148 +1\right] \nonumber\\
149 & =pq-\left( p-1\right) -\left( q-1\right) -1\nonumber\\
150 & =pq-p-q+1\nonumber\\
151 & =p\left( q-1\right) -\left( q-1\right) \nonumber\\
152 & =\left( p-1\right) \left( q-1\right)
153 \end{align}
154
155 \end{proof}
156
157 \begin{theorem}
158 [Euler's Theorem]Let $a$ and $n$ be relatively prime positive numbers, then
159 \begin{equation}
160 a^{\phi\left( n\right) }\equiv1\left( \operatorname{mod}n\right)
161 \label{eq:5}%
162 \end{equation}
163
164 \end{theorem}
165
166 \begin{proof}
167 First we not that if $n$ is prime that the Theorem holds from Fermat's little
168 Theorem. Namely (\ref{eq:5}) reduces to
169 \begin{equation}
170 a^{n-1}=1\operatorname{mod}n
171 \end{equation}
172 Consider the set of integers relatively prime to $n$:
173 \[
174 R=\left\{ x_{1},...,x_{\phi\left( n\right) }\right\}
175 \]
176 Multiplying the set by $a$ modulo $n$ gives:%
177 \[
178 S=\left\{ ax_{1}\operatorname{mod}n,...,ax_{\phi\left( n\right)
179 }\operatorname{mod}n\right\}
180 \]
181 We claim that $S$ is a permutation of $R$. Consider that $a$ and $x_{i}\in R$
182 are relatively prime to $n$. Then $ax_{i}$ must also be relatively prime to
183 $n$ and $ax_{i}\operatorname{mod}n\neq0$. Thus all the members of $S$ are
184 relatively prime to $n$. There can be no duplicates in $S$ because
185 \[
186 ax_{i}\operatorname{mod}n=ax_{j}\operatorname{mod}n\rightarrow x_{i}%
187 \operatorname{mod}n=x_{j}\operatorname{mod}n
188 \]
189 because there exists a $a^{-1}$ in $Z_{n}$. But $x_{i}<n$ and $x_{j}<n$, so we
190 must have that
191 \[
192 x_{i}=x_{j}%
193 \]
194 and we have that there are no duplicates in $S$. Therefore $S$ is a
195 permutation of $R$. Consider%
196 \[
197 \prod_{i=1}^{\phi\left( n\right) }\left( ax_{i}\operatorname{mod}n\right)
198 =\prod_{i=1}^{\phi\left( n\right) }x_{i}%
199 \]
200 Then%
201 \[
202 \prod_{i=1}^{\phi\left( n\right) }ax_{i}\equiv\prod_{i=1}^{\phi\left(
203 n\right) }x_{i}\left( \operatorname{mod}n\right)
204 \]
205 Which gives%
206 \[
207 a^{\phi\left( n\right) }\times\prod_{i=1}^{\phi\left( n\right) }%
208 x_{i}\equiv\prod_{i=1}^{\phi\left( n\right) }x_{i}\left( \operatorname{mod}%
209 n\right)
210 \]
211 Now since $\prod_{i=1}^{\phi\left( n\right) }x_{i}$ is relatively prime to
212 $n$, we can cancel on each side to get the result%
213 \[
214 a^{\phi\left( n\right) }\equiv1\left( \operatorname{mod}n\right)
215 \]
216
217 \end{proof}
218
219 \begin{theorem}
220 Alternate form of Euler's Theorem: Let $a$ and $n$ be relatively prime
221 positive numbers, then%
222 \[
223 a^{\phi\left( n\right) +1}=a\left( \operatorname{mod}n\right)
224 \]
225
226 \end{theorem}
227
228 \begin{corollary}
229 Let $n=pq$ and $m$ be integers where $p$ and $q$ are prime numbers and
230 $0<m<n$. Then
231 \[
232 m^{\phi\left( n\right) +1}=m^{\left( p-1\right) \left( q-1\right)
233 +1}\equiv m\left( \operatorname{mod}n\right)
234 \]
235
236 \end{corollary}
237
238 \begin{theorem}
239 [CRT]Let $S=\left\{ m_{1},...,m_{k}\right\} $ and%
240 \[
241 M=\prod_{i=1}^{k}m_{i}%
242 \]
243 where for all $m_{i},m_{j}\in S,\gcd\left( m_{i},m_{j}\right) =1$ (that is
244 they are pairwise relatively prime). We can represent any integer in $Z_{m}$
245 by the $k-$tuple whose elements are in $Z_{m_{i}}$. That is we have a
246 bijection:
247 \[
248 A\longleftrightarrow\left( a_{1},...,a_{k}\right)
249 \]
250
251 \end{theorem}
252
253 \begin{proof}
254 Define
255 \[
256 a_{i}=A\operatorname{mod}m_{i}%
257 \]
258 Let
259 \[
260 M_{i}=M/m_{i}\text{ for }1\leq i\leq k
261 \]
262 so that the following condition holds:%
263 \[
264 M_{i}=0\left( \operatorname{mod}m_{i}\right)
265 \]
266 Since $M_{i}$ is relatively prime to $m_{i}$ we define the following:%
267 \[
268 c_{i}=M_{i}\times\left( M_{i}^{-1}\operatorname{mod}m_{i}\right) \text{ for
269 }1\leq i\leq k
270 \]
271 We claim that the following holds, but why we have no idea!%
272 \[
273 A\equiv\left( \sum_{i=1}^{k}a_{i}c_{i}\right) \operatorname{mod}M
274 \]
275
276 \end{proof}
277
278 \end{document}
Attached Files
To refer to attachments on a page, use attachment:filename, as shown below in the list of files. Do NOT use the URL of the [get] link, since this is subject to change and can break easily.You are not allowed to attach a file to this page.