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Abstract

Theorem 1 (Fermat’s Little Theorem) Let p be a prime and a ∈ Z+ such that amod p 6= 0. Then

ap−1 ≡ 1 mod p (1)

Proof. Consider Zp = {0, 1, ..., p− 1}, we know that multiplying each element of Zp by a modulo p just gives us Zp in some
order. Since 0× amod p = 0 we have the last p− 1 numbers of Zp multiplied by a as:

a× Zp\ {0} = {a, 2a, 3a, ..., (p− 1) a}
≡ {amod p, 2amod p, ..., (p− 1) amod p} (2)

If we multiply all the numbers in the set we have

a× 2a× 3a× ...× (p− 1) a = ap−1 (1× 2× ...× (p− 1))

= ap−1 (p− 1)! (3)

and
ap−1 (p− 1)! ≡ amod p× 2amod p× ...× (p− 1) amod p (4)

Because we know that all the terms in (4) map to some unique element in Zp not 0 we have the following

ap−1 (p− 1)! ≡ (1× 2× ...× (p− 1)) mod p (5)

and
ap−1 (p− 1)! ≡ (p− 1)! mod p (6)

Since (p− 1) is relatively prime to p (because p is prime) we can divide out (p− 1)! from each side of (6) to get the result:

ap−1 ≡ 1 mod p

Theorem 2 An alternate form of Fermat’s Little theorem: Let p be prime and a ∈ Z+ such that amod p 6= 0. Then

ap = amod p

Definition 3 Let n ∈ Z+ then we define the totient function φ (n) is defined to be the number of positive integers less than
n that are relatively prime to n. That is

φ (n) =
{
x : x ∈ Z+, x < n, gcd (x, n) = 1

}
(7)

Lemma 4 Let n be a prime number. Then
φ (n) = n− 1 (8)

Theorem 5 Given a composit number n = p× q where p, q are prime then

φ (n) = φ (p1)× φ (p2) (9)
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Proof. Consider that the set of residues in Zn is {0, 1, ..., pq − 1}. Now the residues that are not relatively prime to p are

{p, 2p, ..., (q − 1) p} (10)

and the residues that are not relatively prime to q are

{q, 2q, ..., (p− 1) q} (11)

Clearly the size of the two sets of residues not relatively prime to n are (p− 1) and (q − 1) plus the 0 element. So we have

φ (n) = pq − [(p− 1) + (q − 1) + 1]

= pq − (p− 1)− (q − 1)− 1

= pq − p− q + 1

= p (q − 1)− (q − 1)

= (p− 1) (q − 1) (12)

Theorem 6 (Euler’s Theorem) Let a and n be relatively prime positive numbers, then

aφ(n) ≡ 1 (modn) (13)

Proof. First we not that if n is prime that the Theorem holds from Fermat’s little Theorem. Namely (13) reduces to

an−1 = 1 modn (14)

Consider the set of integers relatively prime to n:

R =
{
x1, ..., xφ(n)

}
Multiplying the set by a modulo n gives:

S =
{
ax1 modn, ..., axφ(n) modn

}
We claim that S is a permutation of R. Consider that a and xi ∈ R are relatively prime to n. Then axi must also be
relatively prime to n and axi modn 6= 0. Thus all the members of S are relatively prime to n. There can be no duplicates
in S because

axi modn = axj modn→ xi modn = xj modn

because there exists a a−1 in Zn. But xi < n and xj < n, so we must have that

xi = xj

and we have that there are no duplicates in S. Therefore S is a permutation of R. Consider

φ(n)∏
i=1

(axi modn) =

φ(n)∏
i=1

xi

Then
φ(n)∏
i=1

axi ≡
φ(n)∏
i=1

xi (modn)

Which gives

aφ(n) ×
φ(n)∏
i=1

xi ≡
φ(n)∏
i=1

xi (modn)

Now since
∏φ(n)
i=1 xi is relatively prime to n, we can cancel on each side to get the result

aφ(n) ≡ 1 (modn)

Theorem 7 Alternate form of Euler’s Theorem: Let a and n be relatively prime positive numbers, then

aφ(n)+1 = a (modn)
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Corollary 8 Let n = pq and m be integers where p and q are prime numbers and 0 < m < n. Then

mφ(n)+1 = m(p−1)(q−1)+1 ≡ m (modn)

Theorem 9 (CRT) Let S = {m1, ...,mk} and

M =

k∏
i=1

mi

where for all mi,mj ∈ S, gcd (mi,mj) = 1 (that is they are pairwise relatively prime). We can represent any integer in Zm
by the k−tuple whose elements are in Zmi . That is we have a bijection:

A←→ (a1, ..., ak)

Proof. Define
ai = Amodmi

Let
Mi = M/mi for 1 ≤ i ≤ k

so that the following condition holds:
Mi = 0 (modmi)

Since Mi is relatively prime to mi we define the following:

ci = Mi ×
(
M−1
i modmi

)
for 1 ≤ i ≤ k

We claim that the following holds, but why we have no idea!

A ≡

(
k∑
i=1

aici

)
modM
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