# Fermat's Little Theorem 

Dr. Scot Anderson

January 26, 2020


#### Abstract

Theorem 1 (Fermat's Little Theorem) Let $p$ be a prime and $a \in Z^{+}$such that $a \bmod p \neq 0$. Then


$$
\begin{equation*}
a^{p-1} \equiv 1 \bmod p \tag{1}
\end{equation*}
$$

Proof. Consider $Z_{p}=\{0,1, \ldots, p-1\}$, we know that multiplying each element of $Z_{p}$ by $a$ modulo $p$ just gives us $Z_{p}$ in some order. Since $0 \times a \bmod p=0$ we have the last $p-1$ numbers of $Z_{p}$ multiplied by $a$ as:

$$
\begin{align*}
a \times Z_{p} \backslash\{0\} & =\{a, 2 a, 3 a, \ldots,(p-1) a\} \\
& \equiv\{a \bmod p, 2 a \bmod p, \ldots,(p-1) a \bmod p\} \tag{2}
\end{align*}
$$

If we multiply all the numbers in the set we have

$$
\begin{align*}
a \times 2 a \times 3 a \times \ldots \times(p-1) a & =a^{p-1}(1 \times 2 \times \ldots \times(p-1)) \\
& =a^{p-1}(p-1)! \tag{3}
\end{align*}
$$

and

$$
\begin{equation*}
a^{p-1}(p-1)!\equiv a \bmod p \times 2 a \bmod p \times \ldots \times(p-1) a \bmod p \tag{4}
\end{equation*}
$$

Because we know that all the terms in (4) map to some unique element in $Z_{p}$ not 0 we have the following

$$
\begin{equation*}
a^{p-1}(p-1)!\equiv(1 \times 2 \times \ldots \times(p-1)) \bmod p \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
a^{p-1}(p-1)!\equiv(p-1)!\bmod p \tag{6}
\end{equation*}
$$

Since $(p-1)$ is relatively prime to $p$ (because $p$ is prime) we can divide out $(p-1)$ ! from each side of (6) to get the result:

$$
a^{p-1} \equiv 1 \bmod p
$$

Theorem 2 An alternate form of Fermat's Little theorem: Let $p$ be prime and $a \in Z^{+}$such that $a \bmod p \neq 0$. Then

$$
a^{p}=a \bmod p
$$

Definition 3 Let $n \in Z^{+}$then we define the totient function $\phi(n)$ is defined to be the number of positive integers less than $n$ that are relatively prime to $n$. That is

$$
\begin{equation*}
\phi(n)=\left\{x: x \in Z^{+}, x<n, \operatorname{gcd}(x, n)=1\right\} \tag{7}
\end{equation*}
$$

Lemma 4 Let $n$ be a prime number. Then

$$
\begin{equation*}
\phi(n)=n-1 \tag{8}
\end{equation*}
$$

Theorem 5 Given a composit number $n=p \times q$ where $p, q$ are prime then

$$
\begin{equation*}
\phi(n)=\phi\left(p_{1}\right) \times \phi\left(p_{2}\right) \tag{9}
\end{equation*}
$$

Proof. Consider that the set of residues in $Z_{n}$ is $\{0,1, \ldots, p q-1\}$. Now the residues that are not relatively prime to $p$ are

$$
\begin{equation*}
\{p, 2 p, \ldots,(q-1) p\} \tag{10}
\end{equation*}
$$

and the residues that are not relatively prime to $q$ are

$$
\begin{equation*}
\{q, 2 q, \ldots,(p-1) q\} \tag{11}
\end{equation*}
$$

Clearly the size of the two sets of residues not relatively prime to $n$ are $(p-1)$ and $(q-1)$ plus the 0 element. So we have

$$
\begin{align*}
\phi(n) & =p q-[(p-1)+(q-1)+1] \\
& =p q-(p-1)-(q-1)-1 \\
& =p q-p-q+1 \\
& =p(q-1)-(q-1) \\
& =(p-1)(q-1) \tag{12}
\end{align*}
$$

Theorem 6 (Euler's Theorem) Let $a$ and $n$ be relatively prime positive numbers, then

$$
\begin{equation*}
a^{\phi(n)} \equiv 1(\bmod n) \tag{13}
\end{equation*}
$$

Proof. First we not that if $n$ is prime that the Theorem holds from Fermat's little Theorem. Namely (13) reduces to

$$
\begin{equation*}
a^{n-1}=1 \bmod n \tag{14}
\end{equation*}
$$

Consider the set of integers relatively prime to $n$ :

$$
R=\left\{x_{1}, \ldots, x_{\phi(n)}\right\}
$$

Multiplying the set by $a$ modulo $n$ gives:

$$
S=\left\{a x_{1} \bmod n, \ldots, a x_{\phi(n)} \bmod n\right\}
$$

We claim that $S$ is a permutation of $R$. Consider that $a$ and $x_{i} \in R$ are relatively prime to $n$. Then $a x_{i}$ must also be relatively prime to $n$ and $a x_{i} \bmod n \neq 0$. Thus all the members of $S$ are relatively prime to $n$. There can be no duplicates in $S$ because

$$
a x_{i} \bmod n=a x_{j} \bmod n \rightarrow x_{i} \bmod n=x_{j} \bmod n
$$

because there exists a $a^{-1}$ in $Z_{n}$. But $x_{i}<n$ and $x_{j}<n$, so we must have that

$$
x_{i}=x_{j}
$$

and we have that there are no duplicates in $S$. Therefore $S$ is a permutation of $R$. Consider

$$
\prod_{i=1}^{\phi(n)}\left(a x_{i} \bmod n\right)=\prod_{i=1}^{\phi(n)} x_{i}
$$

Then

$$
\prod_{i=1}^{\phi(n)} a x_{i} \equiv \prod_{i=1}^{\phi(n)} x_{i}(\bmod n)
$$

Which gives

$$
a^{\phi(n)} \times \prod_{i=1}^{\phi(n)} x_{i} \equiv \prod_{i=1}^{\phi(n)} x_{i}(\bmod n)
$$

Now since $\prod_{i=1}^{\phi(n)} x_{i}$ is relatively prime to $n$, we can cancel on each side to get the result

$$
a^{\phi(n)} \equiv 1(\bmod n)
$$

Theorem 7 Alternate form of Euler's Theorem: Let a and $n$ be relatively prime positive numbers, then

$$
a^{\phi(n)+1}=a(\bmod n)
$$

Corollary 8 Let $n=p q$ and $m$ be integers where $p$ and $q$ are prime numbers and $0<m<n$. Then

$$
m^{\phi(n)+1}=m^{(p-1)(q-1)+1} \equiv m(\bmod n)
$$

Theorem 9 (CRT) Let $S=\left\{m_{1}, \ldots, m_{k}\right\}$ and

$$
M=\prod_{i=1}^{k} m_{i}
$$

where for all $m_{i}, m_{j} \in S, \operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ (that is they are pairwise relatively prime). We can represent any integer in $Z_{m}$ by the $k$-tuple whose elements are in $Z_{m_{i}}$. That is we have a bijection:

$$
A \longleftrightarrow\left(a_{1}, \ldots, a_{k}\right)
$$

Proof. Define

$$
a_{i}=A \bmod m_{i}
$$

Let

$$
M_{i}=M / m_{i} \text { for } 1 \leq i \leq k
$$

so that the following condition holds:

$$
M_{i}=0\left(\bmod m_{i}\right)
$$

Since $M_{i}$ is relatively prime to $m_{i}$ we define the following:

$$
c_{i}=M_{i} \times\left(M_{i}^{-1} \bmod m_{i}\right) \text { for } 1 \leq i \leq k
$$

We claim that the following holds, but why we have no idea!

$$
A \equiv\left(\sum_{i=1}^{k} a_{i} c_{i}\right) \bmod M
$$

