Attachment 'booleanalgebra.tex'
Download 1 \documentclass{article}
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 \usepackage{amsfonts}
4 \usepackage{amssymb}
5 \usepackage{geometry}
6
7 %TCIDATA{OutputFilter=LATEX.DLL}
8 %TCIDATA{Version=5.00.0.2552}
9 %TCIDATA{<META NAME="SaveForMode" CONTENT="1">}
10 %TCIDATA{Created=Sunday, January 23, 2005 12:05:04}
11 %TCIDATA{LastRevised=Sunday, January 23, 2005 14:39:42}
12 %TCIDATA{<META NAME="GraphicsSave" CONTENT="32">}
13 %TCIDATA{<META NAME="DocumentShell" CONTENT="Standard LaTeX\Blank - Standard LaTeX Article">}
14 %TCIDATA{CSTFile=40 LaTeX article.cst}
15
16 \newtheorem{theorem}{Theorem}
17 \newtheorem{acknowledgement}[theorem]{Acknowledgement}
18 \newtheorem{algorithm}[theorem]{Algorithm}
19 \newtheorem{axiom}[theorem]{Axiom}
20 \newtheorem{case}[theorem]{Case}
21 \newtheorem{claim}[theorem]{Claim}
22 \newtheorem{conclusion}[theorem]{Conclusion}
23 \newtheorem{condition}[theorem]{Condition}
24 \newtheorem{conjecture}[theorem]{Conjecture}
25 \newtheorem{corollary}[theorem]{Corollary}
26 \newtheorem{criterion}[theorem]{Criterion}
27 \newtheorem{definition}[theorem]{Definition}
28 \newtheorem{example}[theorem]{Example}
29 \newtheorem{exercise}[theorem]{Exercise}
30 \newtheorem{lemma}[theorem]{Lemma}
31 \newtheorem{notation}[theorem]{Notation}
32 \newtheorem{problem}[theorem]{Problem}
33 \newtheorem{proposition}[theorem]{Proposition}
34 \newtheorem{remark}[theorem]{Remark}
35 \newtheorem{solution}[theorem]{Solution}
36 \newtheorem{summary}[theorem]{Summary}
37 \newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
38 \input{tcilatex}
39 \geometry{left=1in,right=1in,top=1in,bottom=1in}
40
41 \begin{document}
42
43
44 \section{Boolean Algebra Definitions and Examples}
45
46 \begin{definition}
47 A \textbf{Boolean Algebra} is a tuple%
48 \[
49 \left\langle \delta ,\sqcap ,\sqcup ,^{\prime },\top ,\bot \right\rangle
50 \]%
51 Where each element is defined as follows:
52 \[
53 \begin{tabular}{ll}
54 $\delta $ & Non-empty set called the \textbf{domain} \\
55 $\sqcap $ & binary function $\sqcap :\delta \times \delta \rightarrow \delta
56 $ \\
57 $\sqcup $ & binary function $\sqcup :\delta \times \delta \rightarrow \delta
58 $ \\
59 $^{\prime }$ & unary function $^{\prime }:\delta \rightarrow \delta $ \\
60 $\bot $ & specific element called the \textbf{zero }element \\
61 $\top $ & specific element called the \textbf{one} element%
62 \end{tabular}%
63 \]
64 \end{definition}
65
66 \begin{definition}
67 A Boolean algebra of sets \emph{is any }\ Boolean algebra, where:
68
69 $\delta $ is a set of sets,
70
71 $\sqcup $ is interpreted as set union, denoted $\cup $.
72
73 $\sqcap $ is interpreted as set intersection denoted $\cap $
74
75 $^{\prime }$ is interpreted as set complement with repsect to $\top $,
76 denoted $\overline{}$, and $\sqsubseteq $ (or $\sqsupseteq $) is interpreted
77 as set containtment, denoted as $\subseteq $ (or $\supseteq $ ).
78 \end{definition}
79
80 \begin{definition}
81 An \emph{atom} of a Boolean algebra is an element $x\neq \bot $ such that
82 there is no other element $y\neq \bot $ with $y\sqsubseteq x$. I can happen
83 that there are no atoms at all in a Boolean algebra. In that case we call
84 the Boolean algebra \emph{atomless}; otherwise we call it \emph{atomic}.
85 \end{definition}
86
87 \begin{example}
88 \[
89 B_{Z}=\left\langle Powerset(\mathbb{Z}),\cap ,\cup ,~%
90 %TCIMACRO{\U{af}}%
91 %BeginExpansion
92 \bar{}%
93 %EndExpansion
94 ~,\emptyset ,\mathbb{Z}\right\rangle
95 \]%
96 is a Boolean algebra of sets. In this algebra for each $i\in \mathbb{Z}$,
97 the singleton $\left\{ i\right\} $ is an atom. Thus this is an \textbf{%
98 atomic Boolean algebra}. Clearly $x=\left\{ 1\right\} \neq \bot $ and $y$
99 can be either $\left\{ 1\right\} $ or $\emptyset $. We eliminate $\left\{
100 1\right\} $ from consideration because it is not an \textbf{other element}.
101 Since $y=\bot $, we conclude that there are no other elements such that $%
102 y\neq \bot $.
103 \end{example}
104
105 \begin{example}
106 Let $H$ be the set of all finite unions of half-open intervals of the form $%
107 [a,b)$ over the rational numbers, where $[a,b)$ means all rational numbers
108 that are greater than or equal to $a$ and less than $b$, where $a$ is a
109 rational or $-\infty $ and $b$ is a rational number or $\infty $.%
110 \[
111 B_{H}=\left\langle H,\cap ,\cup ,~%
112 %TCIMACRO{\U{af}}%
113 %BeginExpansion
114 \bar{}%
115 %EndExpansion
116 ~,\emptyset ,\mathbb{Q}\right\rangle
117 \]%
118 This is another Boolean algebra of sets, but this set is atomless. $\forall
119 x=[a,b)$, $a<b$ there exists a $c$ such that $a<c<b$. Thus $[a,c)\subseteq
120 \lbrack a,b)$, and $[a,c)\neq \emptyset $.
121 \end{example}
122
123 \end{document}
Attached Files
To refer to attachments on a page, use attachment:filename, as shown below in the list of files. Do NOT use the URL of the [get] link, since this is subject to change and can break easily.You are not allowed to attach a file to this page.