1 Boolean Algebra Definitions and Examples

Definition 1 A Boolean Algebra is a tuple

 $\langle \delta, \sqcap, \sqcup, ', \top, \bot \rangle$

Where each element is defined as follows:

- δ Non-empty set called the **domain**
- $\square \quad binary \ function \ \square : \delta \times \delta \to \delta$
- $\sqcup \quad binary \ function \ \sqcup : \delta \times \delta \to \delta$
- ' unary function ': $\delta \rightarrow \delta$
- \perp specific element called the **zero** element
- \top specific element called the **one** element

Definition 2 A Boolean algebra of sets is any Boolean algebra, where:

 δ is a set of sets,

 \sqcup is interpreted as set union, denoted \cup .

 \sqcap is interpreted as set intersection denoted \cap

' is interpreted as set complement with repsect to \top , denoted, and \sqsubseteq (or \sqsupseteq) is interpreted as set containtment, denoted as \subseteq (or \supseteq).

Definition 3 An atom of a Boolean algebra is an element $x \neq \bot$ such that there is no other element $y \neq \bot$ with $y \sqsubseteq x$. I can happen that there are no atoms at all in a Boolean algebra. In that case we call the Boolean algebra atomless; otherwise we call it atomic.

Example 4

$$B_Z = \langle Powerset(\mathbb{Z}), \cap, \cup, \bar{}, \emptyset, \mathbb{Z} \rangle$$

is a Boolean algebra of sets. In this algebra for each $i \in \mathbb{Z}$, the singleton $\{i\}$ is an atom. Thus this is an **atomic Boolean algebra**. Clearly $x = \{1\} \neq \bot$ and y can be either $\{1\}$ or \emptyset . We eliminate $\{1\}$ from consideration because it is not an **other element**. Since $y = \bot$, we conclude that there are no other elements such that $y \neq \bot$.

Example 5 Let *H* be the set of all finite unions of half-open intervals of the form [a, b) over the rational numbers, where [a, b) means all rational numbers that are greater than or equal to *a* and less than *b*, where *a* is a rational or $-\infty$ and *b* is a rational number or ∞ .

$$B_H = \langle H, \cap, \cup, \bar{}, \emptyset, \mathbb{Q} \rangle$$

This is another Boolean algebra of sets, but this set is atomless. $\forall x = [a, b), a < b$ there exists a c such that a < c < b. Thus $[a, c) \subseteq [a, b), and [a, c) \neq \emptyset$.