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of
Section 1.5

Linear and Affine Functions

One of the central themes of calculus is the approximation of nonlinear functions by linear
functions, with the fundamental concept being the derivative of a function. This section
will introduce the linear and affine functions which will be key to understanding derivatives
in the chapters ahead.

Linear functions
In the following, we will use the notation f : Rm → R

n to indicate a function whose
domain is a subset of Rm and whose range is a subset of Rn. In other words, f takes a
vector with m coordinates for input and returns a vector with n coordinates. For example,
the function

f(x, y, z) = (sin(x+ y), 2x2 + z)

is a function from R
3 to R2.

Definition We say a function L : Rm → R
m is linear if (1) for any vectors x and y in

R
m,

L(x + y) = L(x) + L(y), (1.5.1)

and (2) for any vector x in Rm and scalar a,

L(ax) = aL(x). (1.5.2)

Example Suppose f : R→ R is defined by f(x) = 3x. Then for any x and y in R,

f(x+ y) = 3(x+ y) = 3x+ 3y = f(x) + f(y),

and for any scalar a,
f(ax) = 3ax = af(x).

Thus f is linear.

Example Suppose L : R2 → R
3 is defined by

L(x1, x2) = (2x1 + 3x2, x1 − x2, 4x2).

Then if x = (x1, x2) and y = (y1, y2) are vectors in R2,

L(x + y) = L(x1 + y1, x2 + y2)
= (2(x1 + y1) + 3(x2 + y2), x1 + y1 − (x2 + y2), 4(x2 + y2))
= (2x1 + 3x2, x1 − x2, 4x2) + (2y1 + 3y2, y1 − y2, 4y2)
= L(x1, x2) + L(y1, y2)
= L(x) + L(y).
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Also, for x = (x1, x2) and any scalar a, we have

L(ax) = L(ax1, ax2)
= (2ax1 + 3ax2, ax1 − ax2, 4ax2)
= a(2x2 + 3x2, x1 − x2, 4x2)
= aL(x).

Thus L is linear.

Now suppose L : R → R is a linear function and let a = L(1). Then for any real
number x,

L(x) = L(1x) = xL(1) = ax. (1.5.3)

Since any function L : R → R defined by L(x) = ax, where a is a scalar, is linear (see
Problem 1), it follows that the only functions L : R→ R which are linear are those of the
form L(x) = ax for some real number a. For example, f(x) = 5x is a linear function, but
g(x) = sin(x) is not.

Next, suppose L : Rm → R is linear and let a1 = L(e1), a2 = L(e2), . . . , am = L(em).
If x = (x1, x2, . . . , xm) is a vector in Rm, then we know that

x = x1e1 + x2e2 + · · ·+ xmem.

Thus
L(x) = L(x1e1 + x2e2 + · · ·+ xmem)

= L(x1e1) + L(x2e2) + · · ·+ L(xmem)
= x1L(e1 + x2L(e2) + · · ·+ xmL(em)
= x1a1 + x2a2 + · · ·+ xmam

= a · x,

(1.5.4)

where a = (a1, a2, . . . , am). Since for any vector a in Rm, the function L(x) = a ·x is linear
(see Problem 1), it follows that the only functions L : Rm → R which are linear are those
of the form L(x) = a · x for some fixed vector a in Rm. For example,

f(x, y) = (2,−3) · (x, y) = 2x− 3y

is a linear function from R
2 to R, but

f(x, y, z) = x2y + sin(z)

is not a linear function from R
3 to R.

Now consider the general case where L : Rm → R
n is a linear function. Given a vector

x in Rm, let Lk(x) be the kth coordinate of L(x), k = 1, 2, . . . , n. That is,

L(x) = (L1(x), L2(x), . . . , Ln(x)).
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Since L is linear, for any x and y in Rm we have

L(x + y) = L(x) + L(y),

or, in terms of the coordinate functions,

(L1(x + y), L2(x + y), . . . , Ln(x + y)) = (L1(x), L2(x), . . . , Ln(x))
+ (L1(y), L2(y), . . . , Ln(y))

= (L1(x) + L1(y), L2(x) + L2(y),
. . . , Ln(x) + Ln(y)).

Hence Lk(x + y) = Lk(x) + Lk(y) for k = 1, 2, . . . , n. Similarly, if x is in Rm and a is a
scalar, then L(ax) = aL(x), so

(L1(ax), L2(ax), . . . , Ln(ax) = a(L1(x), L2(x), . . . , Ln(x))
= (aL1(x), aL2(x), . . . , aLn(x)).

Hence Lk(ax) = aLk(x) for k = 1, 2, . . . , n. Thus for each k = 1, 2, . . . , n, Lk : Rm → R is
a linear function. It follows from our work above that, for each k = 1, 2, . . . , n, there is a
fixed vector ak in Rm such that Lk(x) = ak · x for all x in Rm. Hence we have

L(x) = (a1 · x,a2 · x, . . . ,an · x) (1.5.5)

for all x in Rm. Since any function defined as in (1.5.5) is linear (see Problem 1 again), it
follows that the only linear functions from R

m to Rn must be of this form.

Theorem If L : Rm → R
n is linear, then there exist vectors a1,a2, . . . ,an in Rm such

that
L(x) = (a1 · x,a2 · x, . . . ,an · x) (1.5.6)

for all x in Rm.

Example In a previous example, we showed that the function L : R2 → R
3 defined by

L(x1, x2) = (2x1 + 3x2, x1 − x2, 4x2)

is linear. We can see this more easily now by noting that

L(x1, x2) = ((2, 3) · (x1, x2), (1,−1) · (x1, x2), (0, 4) · (x1, x2)).

Example The function

f(x, y, z) = (x+ y, sin(x+ y + z))

is not linear since it cannot be written in the form of (1.5.6). In particular, the function
f2(x, y, z) = sin(x+y+z) is not linear; from our work above, it follows that f is not linear.
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Matrix notation
We will now develop some notation to simplify working with expressions such as (1.5.6).
First, we define an n×m matrix to be to be an array of real numbers with n rows and m
columns. For example,

M =

 2 3
1 −1
0 4


is a 3×2 matrix. Next, we will identify a vector x = (x1, x2, . . . , xm) in Rm with the m×1
matrix

x =


x1

x2
...
xm

 ,
which is called a column vector. Now define the product Mx of an n×m matrix M with
an m× 1 column vector x to be the n× 1 column vector whose kth entry, k = 1, 2, . . . , n,
is the dot product of the kth row of M with x. For example, 2 3

1 −1
0 4

[ 2
1

]
=

 4 + 3
2− 1
0 + 4

 =

 7
1
4

 .
In fact, for any vector x = (x1, x2) in R2, 2 3

1 −1
0 4

[x1

x2

]
=

 2x1 + 3x2

x1 − x2

4x2

 .
In other words, if we let

L(x1, x2) = (2x1 + 3x2, x1 − x2, 4x2),

as in a previous example, then, using column vectors, we could write

L(x1, x2) =

 2 3
1 −1
0 4

[x1

x2

]
.

In general, consider a linear function L : Rm → R
n defined by

L(x) = (a1 · x,a2 · x, . . . ,an · x) (1.5.7)

for some vectors a1,a2, . . . ,an in Rm. If we let M be the n×m matrix whose kth row is
ak, k = 1, 2, . . . , n, then

L(x) = Mx (1.5.8)
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for any x in Rm. Now, from our work above,

ak = (Lk(e1), Lk(e2), . . . , Lk(em), (1.5.9)

which means that the jth column of M is


L1(ej)
L2(ej)

...
Ln(ej)

 , (1.5.10)

j = 1, 2, . . . ,m. But (1.5.10) is just L(ej) written as a column vector. Hence M is the
matrix whose columns are given by the column vectors L(e1), L(e2), . . . , L(em).

Theorem Suppose L : Rm → R
n is a linear function and M is the n×m matrix whose

jth column is L(ej), j = 1, 2, . . . ,m. Then for any vector x in Rm,

L(x) = Mx. (1.5.11)

Example Suppose L : R3 → R
2 is defined by

L(x, y, z) = (3x− 2y + z, 4x+ y).

Then
L(e1) = L(1, 0, 0) = (3, 4),

L(e2) = L(0, 1, 0) = (−2, 1),

and
L(e3) = L(0, 0, 1) = (1, 0).

So if we let

M =
[

3 −2 1
4 1 0

]
,

then

L(x, y, z) =
[

3 −2 1
4 1 0

]xy
z

 .
For example,

L(1,−1, 3) =
[

3 −2 1
4 1 0

] 1
−1

3

 =
[

3 + 2 + 3
4− 1 + 0

]
=
[

8
3

]
.
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Figure 1.5.1 Rotating a vector in the plane

Example Let Rθ : R2 → R
2 be the function that rotates a vector x in R2 counterclock-

wise through an angle θ, as shown in Figure 1.5.1. Geometrically, it seems reasonable that
Rθ is a linear function; that is, rotating the vector x + y through an angle θ should give
the same result as first rotating x and y separately through an angle θ and then adding,
and rotating a vector ax through an angle θ should give the same result as first rotating
x through an angle θ and then multiplying by a. Now, from the definition of cos(θ) and
sin(θ),

Rθ(e1) = Rθ(1, 0) = (cos(θ), sin(θ))

(see Figure 1.5.2), and, since e2 is e1 rotated, counterclockwise, through an angle π
2 ,

Rθ(e2) = Rθ+π
2

(e1) =
(

cos
(
θ +

π

2

)
, sin

(
θ +

π

2

))
= (− sin(θ), cos(θ)).

Hence

Rθ(x, y) =
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
x
y

]
. (1.5.12)

You are asked in Problem 9 to verify that the linear function defined in (1.5.12) does in
fact rotate vectors through an angle θ in the counterclockwise direction. Note that, for
example, when θ = π

2 , we have

Rπ
2

(x, y) =
[

0 −1
1 0

] [
x
y

]
.

In particular, note that Rπ
2

(1, 0) = (0, 1) and Rπ
2

(0, 1) = (−1, 0); that is, Rπ
2

takes e1 to
e2 and e2 to −e1. For another example, if θ = π

6 , then

Rπ
6

(x, y) =


√

3
2

−1
2

1
2

√
3

2

[xy
]
.
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Figure 1.5.2 Rotating e1 through an angle θ

In particular,

Rπ
6

(1, 2) =


√

3
2

−1
2

1
2

√
3

2

[ 1
2

]
=


√

3
2
− 1

1
2

+
√

3

 =


√

3− 2
2

1 + 2
√

3
2

 .

Affine functions

Definition We say a function A : Rm → R
n is affine if there is a linear function L :

R
m → R

n and a vector b in Rn such that

A(x) = L(x) + b (1.5.13)

for all x in Rm.

An affine function is just a linear function plus a translation. From our knowledge of
linear functions, it follows that if A : Rm → R

n is affine, then there is an n×m matrix M
and a vector b in Rn such that

A(x) = Mx + b (1.5.14)

for all x in Rm. In particular, if f : R→ R is affine, then there are real numbers m and b
such that

f(x) = mx+ b (1.5.15)

for all real numbers x.

Example The function

A(x, y) = (2x+ 3, y − 4x+ 1)
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is an affine function from R
2 to R2 since we may write it in the form

A(x, y) = L(x, y) + (3, 1),

where L is the linear function

L(x, y) = (2x, y − 4x).

Note that L(1, 0) = (2,−4) and L(0, 1) = (0, 1), so we may also write A in the form

A(x, y) =
[

2 0
−4 1

] [
x
y

]
+
[

3
1

]
.

Example The affine function

A(x, y) =


1√
2
− 1√

2
1√
2

1√
2

[xy
]

+
[

1
2

]

first rotates a vector, counterclockwise, in R2 through an angle of π
4 and then translates it

by the vector (1, 2).

Problems

1. Let a1,a2, . . . ,an be vectors in Rm and define L : Rm → R
n by

L(x) = (a1 · x,a2 · x, . . . ,an · x).

Show that L is linear. What does L look like in the special cases
(a) m = n = 1?
(b) n = 1?
(c) m = 1?

2. For each of the following functions f , find the dimension of the domain space, the
dimension of the range space, and state whether the function is linear, affine, or neither.
(a) f(x, y) = (3x− y, 4x, x+ y) (b) f(x, y) = (4x+ 7y, 5xy)
(c) f(x, y, z) = (3x+ z, y − z, y − 2x) (d) f(x, y, z) = (3x− 4z, x+ y + 2z)

(e) f(x, y, z) =
(

3x+ 5, y + z,
1

x+ y + z

)
(f) f(x, y) = 3x+ y − 2

(g) f(x) = (x, 3x) (h) f(w, x, y, z) = (3x,w + x− y + z − 5)
(i) f(x, y) = (sin(x+ y), x+ y) (j) f(x, y) = (x2 + y2, x− y, x2 − y2)
(k) f(x, y, z) = (3x+ 5, y + z, 3x− z + 6, z − 1)
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3. For each of the following linear functions L, find a matrix M such that L(x) = Mx.
(a) L(x, y) = (x+ y, 2x− 3y) (b) L(w, x, y, z) = (x, y, z, w)
(c) L(x) = (3x, x, 4x) (d) L(x) = −5x
(e) L(x, y, z) = 4x− 3y + 2z (f) L(x, y, z) = (x+ y + z, 3x− y, y + 2z)
(g) L(x, y) = (2x, 3y, x+ y, x− y, 2x− 3y) (h) L(x, y) = (x, y)
(i) L(w, x, y, z) = (2w + x− y + 3z, w + 2x− 3z)

4. For each of the following affine functions A, find a matrix M and a vector b such that
A(x) = Mx + b.
(a) A(x, y) = (3x+ 4y − 6, 2x+ y − 3) (b) A(x) = 3x− 4
(c) A(x, y, z) = (3x+ y − 4, y − z + 1, 5) (d) A(w, x, y, z) = (1, 2, 3, 4)
(e) A(x, y, z) = 3x− 4y + z − 1 (f) A(x) = (3x,−x, 2)
(g) A(x1, x2, x3) = (x1 − x2 + 1, x1 − x3 + 1, x2 + x3)

5. Multiply the following.

(a)
[

1 2 3
3 2 1

] 1
2
−3

 (b)

−1 2
3 −2
−1 1

[ 3
−1

]

(c) [ 1 2 1− 3 ]


2
3
−2

1

 (d)

 1 2 1
3 2 3
0 1 2

 2
−1

2


6. Let L : R2 → R

2 be the linear function that maps a vector x = (x, y) to its reflection
across the horizontal axis. Find the matrix M such that L(x) = Mx for all x in R2.

7. Let L : R2 → R
2 be the linear function that maps a vector x = (x, y) to its reflection

across the line y = x. Find the matrix M such that L(x) = Mx for all x in R2.

8. Let L : R2 → R
2 be the linear function that maps a vector x = (x, y) to its reflection

across the line y = −x. Find the matrix M such that L(x) = Mx for all x in R2.

9. Let Rθ be defined as in (1.5.12).
(a) Show that for any x in R2, ‖Rθ(x)‖ = ‖x‖.
(b) For any x in R2, let α be the angle between x and Rθ(x). Show that cos(α) =

cos(θ). Together with (a), this verifies that Rθ(x) is the rotation of x through an
angle θ.

10. Let Sθ : R2 → R
2 be the linear function that rotates a vector x clockwise through an

angle θ. Find the matrix M such that Sθ(x) = Mx for all x in R2.

11. Given a function f : Rm → R
n, we call the set

{y : y = f(x) for some x in Rm}

the image, or range, of f .
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(a) Suppose L : R→ R
n is linear with L(1) 6= 0. Show that the image of L is a line in

R
n which passes through 0.

(b) Suppose L : R2 → R
n is linear and L(e1) and L(e2) are linearly independent.

Show that the image of L is a plane in Rn which passes through 0.

12. Given a function f : Rm → R, we call the set

{(x1, x2, . . . , xm, xm+1) : xm+1 = f(x1, x2, . . . , xm)}

the graph of f . Show that if L : Rm → R is linear, then the graph of L is a hyperplane
in Rm+1.


