Definition 1 (Affine Function) We say a function $A : \mathbb{R}^m \to \mathbb{R}^n$ is affine if there is a linear function $L : \mathbb{R}^m \to \mathbb{R}^n$ and a vector b in \mathbb{R}^n such that

$$A(x) = L(x) + b \tag{1}$$

 $\forall x \text{ in } \mathbb{R}^m.$

An *affine* function is just a linear function plus a translation. From our knowledge of linear functions, it follows that if $A : \mathbb{R}^m \to \mathbb{R}^n$ is *affine*, then there is an $n \times m$ matrix M and a vector b in \mathbb{R}^n such that

$$A(x) = Mx + b \tag{2}$$

 $\forall x \text{ in } \mathbb{R}^m$. In particular, if $f : \mathbb{R} \to \mathbb{R}$ is affine, then there are real numbers m and b such that

$$f(x) = mx + b \tag{3}$$

for all real numbers x.