Definition 1 (Affine Function) We say a function $A: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is affine if there is a linear function $L: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ and a vector b in \mathbb{R}^{n} such that

$$
\begin{equation*}
A(x)=L(x)+b \tag{1}
\end{equation*}
$$

$\forall x$ in \mathbb{R}^{m}.
An affine function is just a linear function plus a translation. From our knowledge of linear functions, it follows that if $A: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is affine, then there is an $n \times m$ matrix M and a vector b in \mathbb{R}^{n} such that

$$
\begin{equation*}
A(x)=M x+b \tag{2}
\end{equation*}
$$

$\forall x$ in \mathbb{R}^{m}. In particular, if $f: \mathbb{R} \rightarrow \mathbb{R}$ is affine, then there are real numbers m and b such that

$$
\begin{equation*}
f(x)=m x+b \tag{3}
\end{equation*}
$$

for all real numbers x.

