
1 Predicate Calculus

Predicate calculus contains all the components of propositional calculus, including propositional variables
and constants. In addition, predicate calculus contains terms, predicates and quanti�ers.

De�nition 1 Terms in predicate calculus have the same role as nouns in English.

De�nition 2 Predicates are used to describe certain properties or relationships between individuals or ob-
jects.

De�nition 3 Quanti�ers indicate how frequently a certain statement is true. Speci�cally the Universal
Quanti�er indicates if a statement is always true usually using the for all symbol 8. The existential
quanti�er indicates that a statement is sometimes true using the there exists symbol 9.

De�nition 4 The universe of discourse or domain is the collection of all persons, ideas, symbols, datas-
tructures and so on, that a¤ect the logical argument under consideration. The elements of the universe of
discourse are called individuals. (p60) However in research these are often just called symbols or objects. To
refer to objects we used identi�ers called individual constants.

In predicate calculus each predicate is given a name which is followed by a list of arguments. So the
statement Mary and Paul are siblings would be written

siblings (mary; paul)

Many logicians use only single letter variables and would write this as follows.

s (m; p)

Not that this has an arity of 2. The statement Tom is a cat is written

cat (Tom)

has an arity of 1. A Predicate with an arity of one is called a property.

De�nition 5 A predicate name, followed by an argument list in parentheses, is called an atomic formula.

Atomic formulas can be combined by logical connectives like propositions:

cat (Tom)) hastail (Tom) (1)

We note that if all arguments of a predicate are individual constants, then the resulting atomic formula
must be true or false.

De�nition 6 Any method that assigns truth values to all possible combinations of individulals of a predicate
is called an assignment of the predicate.

Example 7 Suppose want to write an assignment table for four individuals (D;J;M;P ) where the predicate
mother has an arity of 2. Table 1 is an assignment for the predicate mother. By convention rows contain
the �rst argument and columns contain the second argument.

D J M P
D F F F F
J F F T T
M F F F F
P F F F F

Table 1

1



1.1 Variables and Instantiations

To allow more than just constants in predicate arguments we allow variables. Normally these are lower case
alphabet characters. Using this convention we can restate statement (1) as follows.

cat (x)) hastail (x)

As in propositional calculus expressions can be given names.

A = cat (x)) hastail (x) (2)

This means that when we write A we really mean cat (x)) hastail (x). If the expression represented by A
contains x; we say that A contains x.

De�nition 8 Let A represent an expression, x represent a variable, and t represent a term. Then Sxt A
represents the expression obtained by replacing all occurences of x in A by t. Sxt A is called an instantiation
of A, and t is said to be an instance of x.

Example 9 Therefore (1) could be written as SxTomA where A is given by (2).

1.2 Quanti�ers

De�nition 10 Let A represent an expression, and let x represent a variable. If we want to indicate that
A is true for all possible values of x, we write 8xA. Here, 8x is called the universal quanti�er, and A
is called the scope of the quanti�er. The variable x is said to be bound by the quanti�er. The symbol 8 is
pronounced "for all" or "for every."

Example 11 Suppose we want to write the statment "Everyone gets a break once in a while" using predicate
calculus. We de�ne B to be the predicate "gets a break once in a while." The word "everyone" indicates that
this is true for all x. Thus we write the statements as 8xB (x).

Example 12 Consider the statement that all cats have tails. We can write this using predicate calculus as
8x (cat (x)) hastail (x)).

De�nition 13 Let A represent an expression, and let x represent a variable. If we want to indicate that A
is true for at least one value of x, we write 9xA. This statement is pronounced, "There exists x such that
A." Here, 9x is called the existential quanti�er, and A is called the scope of the existential quanti�er.
The variable x is said to be bound by the quanti�er.

Note: Both 9x and 8x should be treated like unary connectives.

Example 14 Given a statment, "Some objects are blue." We can write this in predicate calculus as 9xBlue (x).

De�nition 15 An expression is called a variant of 8xA if it is of the form 8ySxyA, where y is any variable
name, and SxyA is the expression obtained from A by replacing all instances of x by y. Similarly, 9xA and
9ySxyA are variants of one another.

Example 16 Translate "Everybody has sombody who is his or her mother" into predicate calculus.

Solution 17 We de�ne M to be the predicate "mother"; that is, M (x; y) stands for x is the mother of y.
The statement becomes

8y9xM (x; y)

Example 18 Translate "Nobody is perfect" into predicate calculus.

Solution 19 Let P be the property perfect, then we write :9xP (x) or 8x:P (x)

In each de�nition we have stated that a variable is bound. That is 8xA (x), x is bound. But if you
break this up and are only talking about A (x), x would be free.
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De�nition 20 If a variable is not bound, it is said to be free.

Example 21 Given 8z (P (z) ^Q (x)) _ 9yQ (y) �nd the bound and free variables. In this case x is free,
and both z and y are bound in all occurances.

Some times it is necessary to restrict the domain.

Example 22 Consider the statement "All dogs are mammals." We can write this as If x is a dog, then x
is a mammal. In predicate calculus we write 8x (D (x))M (x)).

Example 23 Consider the statement "Some dogs are brown." We write this as 9x (D (x) ^B (x)) :

Example 24 Consder the statement "only dogs bark." We write this as 8x (bark (x)) dog (x)) :

2 Interpretations and Validity

Valid expressions play the same role in predicate calculus that tautologies played in propositional logic.
Generally speaking an expression A is valid if it is true for all interpretations.

2.1 Interpretations

Formally, an interpretation of a logical expression contains the following components:

1. There must be a universe of discourse (domain)

2. For each individual, there must be an individual constant that exclusively refers to this particular
individual, and to no other.

3. Every free variable must be assigned a unique individual constant.

4. There must be an assignment for each predicate used in the expression, including predicates of arity
0, which represent propositions.

2.2 Validity

De�nition 25 An expression is valid if it is true under all interpretations. To express that an expression
A is valid, we write j= A.

All tautologies are valid expressions. The only di¤erence between valid and tautology is that tautologies
do not involve quanti�ers or predicates. whereas valid expressions are not restricted in this way.

De�nition 26 If B is an expression, then any interpretation that makes B yield T is said to satisfy B. Any
interpretation that satis�es B is called a model of B. If B has a model, then B is said to be satis�able.
Hence, an expression A is not valid if :A is satis�able. Equivalently, if :A has a model then A cannot be
valid.

De�nition 27 An expression B that has no model is said to be contradictory.

De�nition 28 Let A and B represent two expressions. We say that A is logically equivalent to B if
A() B is valid. In this case, we write A � B. Moreover, we say A logically implies B, or A) B is valid.

Example 29 Show the following.

8x (P ) Q (x)) � P ) 8xQ (x) (3)
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Solution 30 Here P is a propositional and Q is a predicate. We can use the law of cases to break this up.

8x (T ) Q (x)) � T ) 8xQ (x) : (4)

8x (F ) Q (x)) � F ) 8xQ (x) : (5)

Since T ) Q (x) is Q (x) and T ) 8xQ (x) is 8xQ (x), Equation 4 becomes

8xQ (x) � 8xQ (x)

and since both F ) Q (x) and F ) 8xQ (x) are both trivially true, we conclude that it doesn�t matter if P
is true or false.

2.3 Converting Valid expressions to schemas

Just like in propositional logic where you can convert tautologies to schemas, you can convert valid ex-
pressions to schemas except that you must give special attention to bound and free variables. You must
take care not to substitute an expression that contains bound variables into the schema for one that does
not contain bound variables. Consider equation (3) and let H (x) be "x is happy," P stand for "the sun is
shining" and Q for "the weather is nice." Then we can substitute P ^ Q for P and H (x) for Q (x) in (3).
Thus the statement

8x (P ^Q) H (x)) � (P ^Q)) 8xH (x)

is correct. To see an example that is not correct let S (x) be the statement that x sings. Then the statement

8x (S (x)) H (x)) � (S (x))) 8xH (x) (6)

clearly is not true. The left side says if a person sings, that person is happy, while the right side says that if
any person sings, every one is happy. In actuality since x in S (x) is a free variable equation (6) isn�t really
equation (3) at all.

2.4 Invalid Expressions

It only takes one, because an expression A is valid if and only if no interpretation yields F. One pitfall is
that one would normally assume if 8xA, then one could assume for x = y. That is 8xA) SxyAM . However
if y is bound in A, this is not true. Consider the following.

8x9yP (x; y)) 9yP (y; y)

2.5 Proving Validity

The problem of proving whether or not an expresion is valid is undecidable!

De�nition 31 An undecidable problem has no general solution in the sense that there is no method that can
reliably provide an answer to the problem.

Some techniques include

1. � Show that the negation is contradictory
� Show that the expression is a tautology
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3 Derivations

3.1 Universal (Instantiation and Generalization)

Here we Introduce and de�ne the rules to insert and remove universal and existential quantifers as well as
a new concept called uni�cation.

De�nition 32 (Universal Instantiation - UI) From 8xP (x) we can derive P (t) for any term t as long
as t is not bound in P .

Example 33 8x(cat (x) ) hastail (x)) logically implies that cat (tom) ) hastail (tom) because tom is not
a bound variable.

De�nition 34 (Universal Generalization - UG) If A is any expression and if x is a variable that does
not appear free in any premise, one has A) 8xA. Here we say that the universal generalization is over x.
Also x may not appear in any premise or it must be bound in all premises.

Example 35 Let P (x) = "x is a computer scence major" and Q (x) = "x likes programming" prove:
8xP (x) ;8x (P (x)) Q (x)) ` 8xQ (x)

Solution 36 Formal Derivation Rule Comment
1. 8xP (x) Premise Everyone is a CS major
2. 8x (P (x)) Q (x)) Premise CS majors like programming
3. P (x) 1; Sxx x is a CS major (instantiation)
4. P (x)) Q (x) 2; Sxx If x is a CS major he likes programming
5. Q (x) 3; 4;MP x like programming
6. 8xQ (x) UG Everyone like programming

Example 37 (Using the deduction theorem with UG) Let S (x) stad for "x studied" and P (x) stand
for "x passed." The premise is that every one whostudied passed. Prove that everyone who did not pass, did
not study.

Solution 38 Formal Derivation Rule Comment
1. 8x (S (x)) P (x)) Premise Everyone who studied passed
2. S (x)) P (x) Sxx UI
3. :P (x) Assumption Assume that x did not pass
4. :S (x) 2; 3;MP x cannot have studied
5. :P (x)) :S (x) DT Apply DT and discharge :P (x)
6. 8x (:P (x)) :S (x)) 5; UG *

Note: Anyone who did not pass cannot have studied. This generalization is possible becasue x is not free
in any premise.

De�nition 39 All variables that are not �xed will be called true variables. A variable may be universally
generalize if and only if it is a true variable. If a variable appears in a premise, then it is assumed to be
�xed, unless it is explicitly stated that the variable is true. We also note that true variables are strictly local
to the line we use them on. This allows us to reuse x over and over again on di¤erent lines as di¤erent
variables. Think scope.

The result of de�nition 39 is that we can despense with the use of the universal quanti�er in favor of
using true variables which in turn simpli�es proofs.

Notation 40 x := y is used to denote instantiation where x is replaced by y instead of Sxy . So instead of
writing "instantiate x to a in line n," we write "n with x := a."
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3.2 Uni�cation

De�nition 41 Two expressions are said to unify if there are legal instantiations that make the expressions
in question identical. The act of unifying is called uni�cation. The instantiation that uni�es the expressions
in question is called a uni�er.

Example 42 Q (a; y; z) and Q (y; b; c) are expressions appearing on di¤erent lines. Show that the two ex-
pression unify, and give a uni�er. Here a; b and c are �xed, and y and z are true variables.

Solution 43 Since y in Q (y; b; c) is a di¤erent variable than y in Q (y; b; c), rename y in the second expres-
sion to become y1. This means that one must unify Q (a; y; z) with Q (y1; b; c). An instance of Q (a; y; z) is
Q (a; b; c), and an instance of Q (y1; b; c) is Q (a; b; c). Since these two instances are identical, Q (a; y; z) and
Q (y; b; c) unify. The uni�er is a = y1; b = y; c = z.

We want to make sure that we use the least number of uni�ers possible. If two di¤erent solutions exist
(and two or more ususally do) the one with the fewest uniferies is said to be more general.

3.3 Existintial (Instantiation and Generalization)

De�nition 44 (Existential Generalization - EG) Sxt A ) 9xA. This just means that if I can �nd a
term t, such that A (t) is true, then three exists an x such that A (x). If you are saying what? I don�t get it,
thats because it�s too easy. If I can �nd one then there exists one.

Consider the following informal example:

1. Everybody who has won a million is rich

2. Mary has won a million.

3. There is somebody who is rich.

or

1. 8xW (x)) R (x)

2. W (Mary)) R (Mary)

3. W (Mary)

4. R (Mary)

5. 9xR (x)

Let�s try a more di¢ cult derivation

Theorem 45 :9xP (x) ` 8x:P (x)

Proof. Formal Derivation Rule Comment
1. :9xP (x) Premise ...
2. P (x) Assumption Assume P (x)
3. 9xP (x) 2,EG ...
4. P (x)) 9xP (x) DT Discharge P (x) and write 4
5. :P (x) 1,4,MT ...
6. 8x:P (x) 3,UG Since x is not a free variable in any premise

De�nition 46 (Existential Instantiation - EI) 9xA) SxbA. This just says that if you have existential
quanti�cation, you can pick an instance but you must use a variable that has not appeared earlier as a free
variable. The safest choice is to pick a new variable.
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Consider the following informal example:

1. Someone has won a million dollars

2. Everybody who has won a million is rich

3. There is somebody who is rich.

Theorem 47 8x (W (x)) R (x)) ;9xW (x) ` 9xR (x)

Proof.
Formal Derivation Rule Comment

1. 9xW (x) Premise Somebody won...
2. W (b) EI Call the winner b
3. 8x (W (x)) R (x)) Premise
4. W (b)) R (b) Sxb If W (x)) R (x) for everybody it holds for b
5. R (b) 2; 4;MP
6. 9xR (x) EG Sombody is rich

4 Logical Equivalences
Table 4: Equivalences Involving Quanti�ers

1. 8xA � A if x is not free in A
1d. 9xA � A if x is not free in A
2. 8xA � 8ySxyA if y is not free in A
2d. 9xA � 9ySxyA if y is not free in A
3. 8xA � Sxt A ^ 8xA for any term t
3d. 9xA � Sxt A _ 9xA for any term t
4. 8x (A ^B) � A _ 8xB if x not free in A
4d. 9x (A _B) � A ^ 9xB if x not free in A
5. 8x (A ^B) � 8xA ^ 8xB
5d. 9x (A _B) � 9xA _ 9xB
6. 8x8yA � 8y8xA
6d. 9x9yA � 9y9xA
7. :9xA � 8x:A
7d. :8xA � 9x:A

De�nition 48 Renaming the variables in an expression such that distict variables have distinct names is
called standardizing the variables apart.

There are lots of examples where we can use the rules in table 4. If you would like to see some of them
see section 2.4 in [[1]]

5 Equational Logic

Axiom 49 (Re�exivity) 8x (x = x)

Notation 50 If A is any expression, the R (n)tr A is the expression one otains from A by replacing the nth

instance of term t by r. If t occurs fewer than n times in A, then R (n)tr A = A.

Axiom 51 (Substitution Rule) If A and t = r are two expressions that have been derived, one is allowed
to conclude that R (n)tr A for any n > 0. In this case we say that we substitute t from t = r into A.

One thing of note is that the substitution rule can be applied to subexpressions embedded in other
expressions. No other rule of inference discussed so far can do this. Thus the substitution rule is very
e¤ecient.
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5.1 Equality and Uniqueness

Consider the following:

lion = mammal

bear = mammal

Certainly both the lion and the bear are mammals, but this is incorrect because we could conclude

lion = bear

which is obviously incorrect. Thus we can not assume that the word "is" can always be translated as
equals. This makes sense when you think of their de�nition of the predicate = as a function. This naturally
presupposes that there can be only one x for each y such that x = y.

Notation 52 91xP (x) indicates that there is exacltly one x that makes P (x) true.
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